Why Do You Need A Collaborative Robot? What Are the Advantages of Collaboration?
Trend

Why Do You Need A Collaborative Robot? What Are the Advantages of Collaboration?

Industrial robots can more quickly and handle large-scale mass production work. So far, nearly half of the industrial robots in the world are used by automobile factories. Let's understand the advantages and disadvantages and applications of industrial robots.
Published: May 21, 2020
Why Do You Need A Collaborative Robot? What Are the Advantages of Collaboration?

Why do you need a collaborative robot?

If any new products are launched, if it is not that the existing products are not done well in some places, it is because the customers have new demands.

What are the advantages of collaboration?

The same is true of the rise of collaborative robots. Summarize the following three points:

  1. The purchase price of industrial robots is not high, but the cost of "import" is high, in other words, collaborative robots are not expensive
    The robots used in industry have a selling price ranging from 400,000 to 1.8 million depending on the load capacity. In 10 years, it is not expensive in terms of general industrial equipment. Relatively speaking, collaborative robots are more expensive, and industrial robots are not expensive.
    But the place where traditional industrial robots are expensive is the "import" (Deployment)-the installation is deployed online (the robot is installed on the production line and can be operated normally), for three reasons (the industrial robot has three highs):
    • High learning curve - Industrial robots are not easy to use. Only trained professional robot engineers can use the robot to complete the setting, configuration, programming, and maintenance tasks. Common engineers rarely have such capabilities.
    • High service charges - Only the in-plant robot engineers are not enough, and a system integrator (SI) who specializes in equipment can guarantee the smooth operation of the production line. Assuming that the purchase cost of one industrial robot is 1 million, and the installation, setting, and configuration of SI, then 1 million or 2 million (1: 2 or 1: 3)
    • The high cost of land occupation - Current industrial robots are mainly responsible for repetitive work in the factory (fixed-point positioning) so that the robot can accurately take or perform an operation to the same place every time. For modern and complex assembly line operations, the operating environment that needs to be “defined” for the production management of each robot on the entire production line requires a lot of time and resources—occupying a large area of valuable factory space (especially in East Asia. Thick country) and the introduction for several months.
  2. Traditional industrial robots have basically killed the secret technique of Taiwan's small and medium-sized enterprises-quickly grab orders
    The big outbreak of Ford's sales is because of the revolutionary mass production in the 1930s. It is the most popular production method in the 20th century. It is mainly based on the decomposition of the production process, assembly lines, standardized parts, mass production, and mechanical repetitive labor. feature. It is generally called Industry 2.0.
    The target customers of traditional industrial robots are enterprises that can be mass-produced, which explains that nearly half of the industrial robots in the world have been used by automobile factories so far.
    The reason why large enterprises such as automobile factories are relatively insensitive to the high deployment costs of industrial robots is that after the product configuration is finalized, the production line can not be changed for a long enough time (a new car is released from the market to exit the market) It usually takes 3 to 6 years (German cars are 6 to 8 years because the foundation is hard enough)). During this period, even if there are changes, only minor changes or skinning of the exterior and interior are carried out. These changes generally do not affect the work of the robot (body welding, painting, main parts handling)), the robot basically does not need to be renewed Programming or redeployment can maximize the use of robots' standardization and high efficiency, and maximize the value of execution investment.
    Relatively speaking, the 3C electronic product industry is more difficult to apply. The replacement rate of electronic products in the 3C industry is high. A new model is used every year. It is relatively unloadable for industrial robots to use this cycle frequency, and more cost is required to update or adjust.
    In addition, small and medium-sized enterprises (SMEs) are currently major customers of emerging markets for industrial robots. At present, traditional industrial robots cannot meet the needs of SME because the products produced by small and medium-sized enterprises are generally customized, small batches, and urgent orders. 3. The short production cycle is a feature. There is not much capital (more importantly, there is no US time) to carry out the large-scale transformation of the production line, and the product ROI is more cautious.
    Therefore, 3C manufacturing and small and medium-sized enterprises will require automated production lines with low total cost (Total Cost), rapid deployment / re-deployment capabilities, and simple on-site use by general engineers. These are difficult to achieve with traditional robots.
    In addition, if more industrial robots are used, in most cases, the original production line needs to be revised, or even re-headed and re-erected, which not only requires huge investment but also may involve production suspension and transformation. It has long been robbed by other foundries, which is also the main reason why many Taiwanese factories have been slow to get robots.
    In addition to capital investment, the 3C industry is often more concerned about timeliness. The common robot automation transformation schemes take 1 month to several months, but the products of the 3C industry cannot wait, and the speed of R & D of 3C products is also eliminated. From product design to production and shipment, we are seeking fast, there is no time to wait for the adjustment of industrial robots, etc. so that competitors have already shipped. In this case, the EMS foundry is still a winner. R & D for continuous overtime for one week, special training for the devil in the production line for 3 days, and immediate post, what robot!? But with the rapid increase of wages in China and ASEAN, the more people are willing to engage in manufacturing the less it comes, the simpler is that there are fewer and fewer people willing to stay in the factory, and installing an industrial robot cannot quickly grab orders.
    Therefore, in accordance with the production characteristics of industrial robots, in addition to the 3C electronics industry, industrial robots are suitable for traditional manufacturing that can be mass-produced.
  3. Manufacturing labor has been exhausted, Taiwanese businessmen have nowhere to move, and production lines have to use some robots to work with fewer and fewer workers
    Industrial robots have always been a model for high-speed automation equipment, but for historical and technical reasons, the safety of working with people is not the focus of the original development of robots (it can also be said that the robots were originally intended to replace 3D work and are dirty ( Dirty), tired (Difficult), dangerous (Dangerous)), so in most factories for safety reasons, it is generally necessary to use fences to isolate robots and personnel. Fortunately, for most of the work previously done by robots, no human involvement is required, and the robot can be completed independently.
    However, with the rise in labor costs in China and the Association of Southeast Asian Nations, many other industries that have not used robots before or rarely have begun to seek robotic automation solutions, such as the mentioned 3C industry, SMEs, and medicine, food, logistics, and other industries. Or the CNC workshop where the space is generally urgent, the plastic shooting factory, etc.
    The characteristics of these emerging industries are many types of products, generally small size, and high flexibility/flexibility requirements for operators. It is difficult for existing robots to provide satisfactory performance solutions under the control of cost and time. What should we do?
    Humans are responsible for the senses (Sense), which is responsible for the production steps with relatively high requirements on vision, touch, and flexibility, and the robot is responsible for repetitive work using its fast, accurate, and characteristic.
    For example, assembling a mobile phone/computer, the collaborative robot is responsible for putting the main parts and screws in the right place (Pick & Place), and the person is responsible for the cable installation, buckling, and screw locking. For example, when assembling a keyboard, the keys can be put in place by a person, and the robot can work with the buckle.
    If humans and machines need to cooperate, it is too inconvenient to have a fence in between. Humans and robots must interact, and they must first pass through safety doors (opening and closing doors also use electricity and time). The overall efficiency is not as good as separate. Use people to get high. At this time, some additional technology is needed to ensure that the robot and humans can safely work in the same area, without the need for obstacles such as fences to be blocked in the middle, that is, the robot is required to have safe cooperation and the on-site engineers do not understand the program Language also responds quickly to temporary situations.
    A human-robot collaborative robot is a new type of robot that can work side by side directly with humans without the use of safety fences for isolation. Human-robot collaborative robots are expected to fill the gap between fully manual assembly production lines and fully automated production lines. In the past, it was often said that robots replaced human labor, but now robots are more regarded as auxiliary tools. The strict boundaries between unchanging automation and manual labor are gradually being eliminated. High-efficiency sensors, intelligent control technology, and the most advanced software technology are integrated on the robot, ensuring safe cooperation between the human and the robot without a protective fence, and can be flexibly applied regardless of location and task. Through this scheme, employees can use the required number of robots in different production locations and for different purposes according to the required number of pieces.
Published by May 21, 2020 Source :solomon

Further reading

You might also be interested in ...

Headline
Trend
Innovation in the Medical Consumables Industry Amidst Global Trends
The global healthcare industry is currently undergoing a pivotal paradigm shift. Every macroeconomic trend—from demographic changes, the geopolitical reshaping of supply chains, and the convergence of biotechnology and digitalization, to the urgent demand for environmental sustainability—profoundly impacts the dynamics and trajectory of the medical device market. Against this backdrop, the medical consumables industry must not merely adapt; it must proactively lead innovation and become a key driver in building resilient healthcare defenses.
Headline
Trend
From Components to Systems: Unveiling the Core Drivers of Robotics Industry Trends
Artificial intelligence and automation technologies are advancing at a rapid pace, driving large‑scale deployments of robots across manufacturing, healthcare, logistics, and service sectors. This momentum is propelling overall industry upgrades and operational efficiency leaps. Amid this wave, mastering the manufacture of high‑precision, high‑reliability core components has become the decisive factor in market competitiveness.
Headline
Trend
The Purifying Force Between Industries: The Evolution and Trends of Cutting Fluid Recycling Systems
Over the past decade, cutting fluid recycling and regeneration technologies have evolved from auxiliary support services into essential core equipment and processes within manufacturing. Recycling and reusing cutting fluids reduce raw material and water waste, making production processes more aligned with circular economy principles. According to market forecasts, the global cutting fluid market size will reach USD 3.78 billion in 2024 and is expected to grow to USD 5.64 billion by 2033, with a compound annual growth rate (CAGR) of approximately 4.3%. Among this, the market for regeneration equipment and treatment services is expanding particularly rapidly, reaching about USD 1.31 billion in 2024 and projected to double to USD 2.61 billion by 2033, with a CAGR as high as 7.8%.
Headline
Trend
Future Trends and Key Technological Breakthroughs in Plastic Recycling Equipment
As global environmental awareness continues to grow, the plastic recycling industry is presented with new development opportunities. However, the sector still faces multiple challenges, including improving recycling rates, efficiently sorting various types of plastics, and reducing operational costs.Plastic recycling involves sorting, cleaning, and processing waste plastics into reusable materials, helping reduce pollution and promote resource reuse.
Headline
Trend
The Shift to Onshoring: How Taiwan’s Supply Chain Strength Is Drawing Global Investment
Recently, increasing geopolitical tensions and global supply chain disruptions resulting from the pandemic have caused multinational corporations to rethink the structure of their supply chains. To mitigate risks and improve resilience, a growing number of manufacturers are shifting their operations from offshoring to onshoring and nearshoring. Thanks to its robust manufacturing ecosystem, strategic location, and technological expertise, Taiwan has emerged as a key destination for advanced manufacturing and high-value component production. Backed by a highly skilled workforce, resilient infrastructure, and advanced manufacturing capabilities, Taiwan is deeply integrated into global technology supply chains and offers stable, tech-driven production networks. These strengths position Taiwan as an ideal onshoring partner and are drawing renewed global investment.
Headline
Trend
Custom Mold and Die Services in Southeast Asia: Taiwan’s Competitive Edge
Custom tooling is the foundation of precision manufacturing, enabling the production of everything from smartphone casings and automotive parts to packaging components and medical devices. In this fast-growing market, Taiwan had remained a trusted leader, delivering advanced tooling solutions that meet the speed, complexity, and quality demands of modern industry.
Headline
Trend
Taiwan's E-Bike Export Surge: Key Markets and Trends Driving Growth
Taiwan's e-bike industry has experienced significant fluctuations in recent years. After reaching a peak in 2022, exports faced a downturn in 2024, with a 47% decline in e-bike exports compared to the previous year. Despite these challenges, the industry is showing signs of recovery and adaptation, positioning itself for future growth. Taiwan has rapidly emerged as a global leader in this booming sector. Once primarily recognized for traditional bicycle manufacturing, Taiwan has transformed into a high-tech hub for premium electric mobility solutions.
Headline
Trend
Taiwan's Strategic Role in Global Data Storage and Memory Supply Chains
With its robust semiconductor industry, advanced manufacturing capabilities, and strategic investments, Taiwan contributes significantly to the production and innovation of memory technologies essential for various applications, from consumer electronics to data centers.
Headline
Trend
Taiwan’s Medical Device Manufacturing: The Medical Devices Act and Its Global Significance
In recent years, Taiwan has emerged as a significant player in the global medical device industry—an ascent shaped not only by its advanced manufacturing capabilities but also by bold regulatory transformation. At the heart of this transformation is the Medical Devices Act, a landmark piece of legislation that redefined how medical technologies are developed, approved, and marketed within Taiwan. Driven by the need to align with international standards and respond to the growing complexity of modern medical technologies, the Act has introduced a risk-based regulatory framework, streamlined approval processes, and facilitated global market access. These reforms have strengthened Taiwan’s position as a competitive and trusted source of medical devices for global healthcare markets. Taiwan's medical device industry is now undergoing rapid growth, propelled by this regulatory clarity, continued investment in high-tech innovation, and rising global demand for safe, effective, and export-ready medical solutions. For manufacturers and investors looking to access the international medical device market, Taiwan offers a strategically evolving landscape that is both business-friendly and globally connected.
Headline
Trend
Taiwan’s Strategic Role in the Global Solar and Battery Market: Opportunities and Innovations
Taiwan’s solar generation reached 12.9 billion kWh in 2023, providing almost 48% of Taiwan’s total renewable energy generation. The focus of the government on energy security and sustainability aligns with the expansion of solar energy infrastructure. The growing electricity demand is pushing the need for additional solar photovoltaic (PV) installations, particularly in industrial and commercial sectors, which are significant consumers of electricity in Taiwan. Moreover, the energy requirements of the industrial sector are driving the adoption of large-scale solar PV projects. In parallel, Taiwan's battery market is expected to reach USD 0.77 billion by 2025 and grow at a CAGR of 14.3% to USD 1.49 billion by 2030. The government plans to accumulate 590 MW of battery-based energy storage by 2025, with significant contributions from both public and private sectors.
Headline
Trend
Powering the Future: New Energy Vehicles, Sustainable Manufacturing, and Challenges
In the quest for a sustainable and eco-friendly future, the automotive industry is witnessing a profound transformation with the emergence of New Energy Vehicles. New Energy Vehicles, commonly known as NEVs, encompass a wide range of vehicles powered by alternative energy sources or a combination of traditional and renewable energy technologies. The implementation of sustainable manufacturing practices and collaboration among stakeholders presents challenges for NEV development as well as great potential for market growth.
Headline
Trend
Charging Ahead: Recharging Infrastructure in the Electric Vehicle Industry
As the electric vehicle (EV) revolution gains momentum worldwide, one of the critical pillars supporting this transition is the development of a robust recharging infrastructure network. This network plays a pivotal role in the widespread adoption of electric vehicles, ensuring convenience, accessibility, and sustainability for EV owners. Factors contributing to the acceptance of EVs and their associated recharging infrastructure include environmental awareness, advancements in battery technology, vehicle design, the expanding range of available EV models, and the implementation of government incentives to promote these new technologies.
Agree