Challenges of Taiwan's Manufacturing Transformation to Smart Manufacturing
Trend

Challenges of Taiwan's Manufacturing Transformation to Smart Manufacturing

The advent of the Industry 4.0 era, coupled with the continued fever of the China-US trade war, has driven Taiwan's manufacturing industry to transform its digital manufacturing into smart manufacturing through digitalization and intelligentization. However, there are four major challenges encountered during the transformation process, and finding a solution to the practice will be the key to the company's victory.
Published: Jun 01, 2020
Challenges of Taiwan's Manufacturing Transformation to Smart Manufacturing

In the face of rapid and iterative new technologies, how can an enterprise stand firm in the market without being eliminated, invest, and consolidate its wisdom to create a new future? Taiwan ’s general manager of IBM said that a few months ago IBM invited the CEOs of 100 leading companies worldwide to discuss the future development of the betting focus. She suggested that companies should not blindly follow new technologies, re-examine their core competitiveness, and then decide which technologies to use for development Smart manufacturing. Two years ago, the company introduced Industry 4.0, started smart manufacturing, and started to make results from a single application on the production line, such as robotic arms or computer vision inspection. However, it was found difficult to copy to other production lines and scenes.

Four Challenges for Taiwanese Enterprises to Develop Smart Manufacturing

A partner of the IBM Global Enterprise Consulting Service Group in Taiwan said: "The dilemma of global smart manufacturing is that nearly 70% of them are difficult to promote and scale quickly." The lack of vertical integration and horizontal expansion makes it difficult to produce specific economic benefits, making Smart manufacturing has encountered a bottleneck, and further pointed out that in the process of developing smart manufacturing in Taiwan, the manufacturing industry generally faces the following four major challenges:

  • Challenge 1: Automation should not be the only positive solution to the old factory system.
    The manufacturing industry has a lot of layout automation, hoping to replace manpower, increase the yield of products, and set off a wave of unmanned factories and light-off factories. "Smart manufacturing requires a complete vertical field to produce a certain economic scale and vertical efficiency, which will be the key to successful transformation!" If only automation is developed, it is not structured and scenarios with the supply chain, production planning, material planning, and other processes Integration, such as equipment upgrades, creating data interfaces, etc., will face the issue of whether automated capital expenditures meet the return on investment. Li Liren suggested that, in response to the current status of the enterprise and the market to be developed, the future overall structure and the integration of new technology should be drawn.
  • Challenge 2: The economic scale and benefits of AI
    Smart manufacturing have developed a mature single scene, such as machine vision used in yield improvement, defect detection, predictive maintenance, etc., but why can't it still improve the company's yield and save manpower? It is because the single-point results have not formed an economic scale and can be copied to other production lines, or lack of high economic efficiency applications and combinations. Li Liren suggested that enterprises use investment return rates and enterprise KPI to guide value verification and structural integration to accelerate the implementation.
  • Challenge 3: The burden of talents and huge old systems.
    For smart manufacturing to develop vertical integration, it will face IT architecture and more than 80% of application systems are issues of old systems. Except that IT budgets are placed on maintaining machine systems, even internal talent Skills also focus on the old system. It is necessary to make good use of ecosystem partners, execute quickly, and expand rapidly. Once it is time to move on to the development of digital transformation and smart manufacturing, it is necessary to train new skills for internal talents. If the economic scale of the group is large enough, you can invest in a new project team with a clear role of integrator, and use newly hired talents for rapid verification, deployment, and promotion, so that the scene application can be quickly achieved. If Dong always manages to take the initiative, he can accelerate the benefits.
  • Challenge 4: Vertical integration and horizontal diffusion.
    When companies develop smart manufacturing, they often start with project trials and cut application scenarios very fragmented, while the initial investment and results have become burdens for subsequent development. Besides, without the future integration structure, it is difficult to quickly spread to different production lines or group departments. The enterprise should establish a clear and complete execution blueprint and timetable, and the execution plan should take three years to plan the execution budget every year.
From the experience of Japanese industrial robot manufacturers and China Heavy Machinery Group, a glimpse of the key to smart manufacturing success.

A Japanese industrial robot manufacturer wanted to develop a new business model and decided to invest in smart manufacturing, build smart factories and robot automation, and quickly expand to the market. This Japanese industrial robot manufacturer will integrate strong OT (Operational Technology) into IT to make a complete vertical integration structure, quickly step out of a single factory, and expand rapidly. To develop a digital factory, China National Heavy Machinery Group plans a four-step overall blueprint.

  • The first step is to do a status quo assessment, complete inventory of existing enterprise resources, and analyze the structure of the digital factory.
  • The second step is a business improvement and demand analysis, put forward management improvement suggestions and objectives, identify the key system support points and needs of the digital factory, and determine the enterprise's digital factory business model.
  • The third step is the overall digital factory planning architecture, including a complete digital factory planning blueprint, strategic goals, and establishing a digital factory application architecture that matches the business, as well as related basic technologies and systems.
  • The fourth step is the digital factory, determine the project to be achieved, and list the detailed implementation plan, focus on the goals in a three-year rolling and one-year adjustment, and establish a perfect digital factory management system to create a system supervision system to the system guarantees success.

5C maturity model: Review the process of enterprise smart manufacturing

How does the manufacturing industry examine the depth and breadth of the company's smart manufacturing process? IBM launched the "5C maturity model" for smart manufacturing, which is divided into five stages by maturity:

Step 1: Device connection (Connect): use the Internet of Things and machine networking to achieve device-to-device connection and collaboration. It is difficult to develop AI and application scenarios if the old equipment is not smart enough to collect data.

Step 2: Data conversion (Convert): combining AI big data platform and edge computing, to develop intelligent AI application scenarios on the device side. For example, AI visual inspection, AI predictive maintenance.

Step 3: Predictive simulation (Cyber): Introducing digital twins (Digital Twin) to the digital factory. Visualize the production site, and dynamically simulate to scheduling, and even achieve dynamic scheduling of learning engine orders and production lines.

Step 4: Smart Factory (Cognitive): To build an artificial intelligence learning platform, so that the factory can self-diagnose, self-repair, automatic scheduling, and accelerate model verification and deployment.

Step 5: Dynamic customization (Configure): through B2B hybrid cloud platform, blockchain, dynamic customization, to achieve a small variety of short delivery time, to achieve a software-defined value chain platform.

As the scenario application becomes more mature, enterprises face four major challenges when investing in smart manufacturing. The biggest bottleneck is a vertical and cross-product line, cross-sector integration. IBM recommends that enterprises plan the overall blueprint and match with suitable partners at each stage Accelerate the implementation of smart manufacturing.

Published by Jun 01, 2020 Source :cw

Further reading

You might also be interested in ...

Headline
Trend
Innovation in the Medical Consumables Industry Amidst Global Trends
The global healthcare industry is currently undergoing a pivotal paradigm shift. Every macroeconomic trend—from demographic changes, the geopolitical reshaping of supply chains, and the convergence of biotechnology and digitalization, to the urgent demand for environmental sustainability—profoundly impacts the dynamics and trajectory of the medical device market. Against this backdrop, the medical consumables industry must not merely adapt; it must proactively lead innovation and become a key driver in building resilient healthcare defenses.
Headline
Trend
From Components to Systems: Unveiling the Core Drivers of Robotics Industry Trends
Artificial intelligence and automation technologies are advancing at a rapid pace, driving large‑scale deployments of robots across manufacturing, healthcare, logistics, and service sectors. This momentum is propelling overall industry upgrades and operational efficiency leaps. Amid this wave, mastering the manufacture of high‑precision, high‑reliability core components has become the decisive factor in market competitiveness.
Headline
Trend
The Purifying Force Between Industries: The Evolution and Trends of Cutting Fluid Recycling Systems
Over the past decade, cutting fluid recycling and regeneration technologies have evolved from auxiliary support services into essential core equipment and processes within manufacturing. Recycling and reusing cutting fluids reduce raw material and water waste, making production processes more aligned with circular economy principles. According to market forecasts, the global cutting fluid market size will reach USD 3.78 billion in 2024 and is expected to grow to USD 5.64 billion by 2033, with a compound annual growth rate (CAGR) of approximately 4.3%. Among this, the market for regeneration equipment and treatment services is expanding particularly rapidly, reaching about USD 1.31 billion in 2024 and projected to double to USD 2.61 billion by 2033, with a CAGR as high as 7.8%.
Headline
Trend
Future Trends and Key Technological Breakthroughs in Plastic Recycling Equipment
As global environmental awareness continues to grow, the plastic recycling industry is presented with new development opportunities. However, the sector still faces multiple challenges, including improving recycling rates, efficiently sorting various types of plastics, and reducing operational costs.Plastic recycling involves sorting, cleaning, and processing waste plastics into reusable materials, helping reduce pollution and promote resource reuse.
Headline
Trend
The Shift to Onshoring: How Taiwan’s Supply Chain Strength Is Drawing Global Investment
Recently, increasing geopolitical tensions and global supply chain disruptions resulting from the pandemic have caused multinational corporations to rethink the structure of their supply chains. To mitigate risks and improve resilience, a growing number of manufacturers are shifting their operations from offshoring to onshoring and nearshoring. Thanks to its robust manufacturing ecosystem, strategic location, and technological expertise, Taiwan has emerged as a key destination for advanced manufacturing and high-value component production. Backed by a highly skilled workforce, resilient infrastructure, and advanced manufacturing capabilities, Taiwan is deeply integrated into global technology supply chains and offers stable, tech-driven production networks. These strengths position Taiwan as an ideal onshoring partner and are drawing renewed global investment.
Headline
Trend
Custom Mold and Die Services in Southeast Asia: Taiwan’s Competitive Edge
Custom tooling is the foundation of precision manufacturing, enabling the production of everything from smartphone casings and automotive parts to packaging components and medical devices. In this fast-growing market, Taiwan had remained a trusted leader, delivering advanced tooling solutions that meet the speed, complexity, and quality demands of modern industry.
Headline
Trend
Taiwan's E-Bike Export Surge: Key Markets and Trends Driving Growth
Taiwan's e-bike industry has experienced significant fluctuations in recent years. After reaching a peak in 2022, exports faced a downturn in 2024, with a 47% decline in e-bike exports compared to the previous year. Despite these challenges, the industry is showing signs of recovery and adaptation, positioning itself for future growth. Taiwan has rapidly emerged as a global leader in this booming sector. Once primarily recognized for traditional bicycle manufacturing, Taiwan has transformed into a high-tech hub for premium electric mobility solutions.
Headline
Trend
Taiwan's Strategic Role in Global Data Storage and Memory Supply Chains
With its robust semiconductor industry, advanced manufacturing capabilities, and strategic investments, Taiwan contributes significantly to the production and innovation of memory technologies essential for various applications, from consumer electronics to data centers.
Headline
Trend
Taiwan’s Medical Device Manufacturing: The Medical Devices Act and Its Global Significance
In recent years, Taiwan has emerged as a significant player in the global medical device industry—an ascent shaped not only by its advanced manufacturing capabilities but also by bold regulatory transformation. At the heart of this transformation is the Medical Devices Act, a landmark piece of legislation that redefined how medical technologies are developed, approved, and marketed within Taiwan. Driven by the need to align with international standards and respond to the growing complexity of modern medical technologies, the Act has introduced a risk-based regulatory framework, streamlined approval processes, and facilitated global market access. These reforms have strengthened Taiwan’s position as a competitive and trusted source of medical devices for global healthcare markets. Taiwan's medical device industry is now undergoing rapid growth, propelled by this regulatory clarity, continued investment in high-tech innovation, and rising global demand for safe, effective, and export-ready medical solutions. For manufacturers and investors looking to access the international medical device market, Taiwan offers a strategically evolving landscape that is both business-friendly and globally connected.
Headline
Trend
Taiwan’s Strategic Role in the Global Solar and Battery Market: Opportunities and Innovations
Taiwan’s solar generation reached 12.9 billion kWh in 2023, providing almost 48% of Taiwan’s total renewable energy generation. The focus of the government on energy security and sustainability aligns with the expansion of solar energy infrastructure. The growing electricity demand is pushing the need for additional solar photovoltaic (PV) installations, particularly in industrial and commercial sectors, which are significant consumers of electricity in Taiwan. Moreover, the energy requirements of the industrial sector are driving the adoption of large-scale solar PV projects. In parallel, Taiwan's battery market is expected to reach USD 0.77 billion by 2025 and grow at a CAGR of 14.3% to USD 1.49 billion by 2030. The government plans to accumulate 590 MW of battery-based energy storage by 2025, with significant contributions from both public and private sectors.
Headline
Trend
Powering the Future: New Energy Vehicles, Sustainable Manufacturing, and Challenges
In the quest for a sustainable and eco-friendly future, the automotive industry is witnessing a profound transformation with the emergence of New Energy Vehicles. New Energy Vehicles, commonly known as NEVs, encompass a wide range of vehicles powered by alternative energy sources or a combination of traditional and renewable energy technologies. The implementation of sustainable manufacturing practices and collaboration among stakeholders presents challenges for NEV development as well as great potential for market growth.
Headline
Trend
Charging Ahead: Recharging Infrastructure in the Electric Vehicle Industry
As the electric vehicle (EV) revolution gains momentum worldwide, one of the critical pillars supporting this transition is the development of a robust recharging infrastructure network. This network plays a pivotal role in the widespread adoption of electric vehicles, ensuring convenience, accessibility, and sustainability for EV owners. Factors contributing to the acceptance of EVs and their associated recharging infrastructure include environmental awareness, advancements in battery technology, vehicle design, the expanding range of available EV models, and the implementation of government incentives to promote these new technologies.
Agree