Will Micro LED Replace LCD and OLED?
Trend

Will Micro LED Replace LCD and OLED?

The electronics industry categorizes LED technologies according to the size of the LED chip. For example, an LED chip that is less than 150 μm is called a mini LED; an LED chip less than 50 μm is called a micro LED. As the size of LED chips becomes smaller and smaller, the structure of display panels will also change accordingly.
Published: May 18, 2022
Will Micro LED Replace LCD and OLED?

When the size of an LED chip is as small as the pixel, each pixel corresponds to one micro LED chip. A micro LED emits light by itself, so it can control the brightness and color of the pixel simultaneously. The micro LED does not require the liquid crystal layer and filter structure of traditional LCD screens.

The screen structure of a micro LED is close to that of an OLED. Both have self-illumination of pixels, simple structure and high luminous efficiency. However, the material life of micro LED is much higher than that of OLED, and its stability is also stronger.

From the perspective of technological maturity, because production costs are still high, the micro LED has a ways to go before it will see large-scale production. OLED faced this cost challenge in its early years of development. Although the cost of a large OLED screen is still much higher than that of an LCD screen, it has reached a standard that can be accepted by most home users.

Judging from past experience, as micro LED technology matures, will OLEDs and LCDs be replaced? Perhaps the answer is not that simple.

Micro LEDs Are Still a Long Way from Making Big Screens

During the early stages of development, it was difficult to apply micro LEDs to large panels. Just like with OLEDs, the production of large-panel, micro LEDs has been greatly limited by yield and cost.

LED chips are becoming smaller, and their value is becoming greater than expected. During the manufacturing of micro LEDs, the wafer eventually needs to be transferred to the back plane of the screen. If the resolution of the screen is 1,920 × 1,080, the number of pixels on the screen exceeds 2 million. Because each pixel consists of three sub-pixels of red, green and blue, there are 6 million micro LED chips on this micro LED screen.

With contemporary semiconductor manufacturing processes, it is not difficult to grow 6 million micro LED chips on a wafer, the difficult thing is to transfer these 6 million micro LED chips to the backplane. The industry calls this transfer process a mass transfer. Even the high-end mini LED screens on the market, such as the 2021 iPad Pro 12.9", have only 10,000 mini LEDs in the backlight layer. Therefore, mass transfer is a major difficulty in micro LED manufacturing.

Different solutions exist on the market for the mass transfer problem. Among them, the two main categories are: whole-piece transfer and batch pick-and-place. Whole-chip transfer is suitable for small-sized screens, because the screen panel is small enough, so it can be transferred as a whole. The technology of picking and placing in batches is more difficult, and large screens can only use this solution to achieve mass transfer.

Mass transfer isn't the only technical hurdle in micro LED panel manufacturing, but it's the watershed that constrains micro LED manufacturing for large and small screens. Of course, how big a screen can be, depends largely on cost, as demonstrated by Samsung and Sony Micro; LED large-screen TVs all cost over a million US dollars.

At display technology exhibitions in recent years, the micro LED products being displayed by manufacturers have become more pragmatic. At this year's SID Display Week, the micro LED products displayed by Tianma Microelectronics, AUO, Chitron Technology and other manufacturers were all aimed at small screen applications such as automotive dashboards and electronic paper. Of course, even if the display is a large-screen application, the current parameter advantages have not greatly surpassed OLED/LCD.

Opportunities At This Stage

The obvious advantages in structure determine the characteristics of micro LED's high pixel density, high brightness, high contrast, and fast response. High pixel density, high brightness and high contrast can be significantly perceived from the structure. In previous prototype product demonstrations, manufacturers have demonstrated displays with tens of thousands of ppi (pixels per inch) pixel density.

Since the micro LED chip is small at the pixel level, it can display true black with no light from a single pixel. At the same time, the ultra-small LEDs in micro LED displays are more efficient in converting electricity into photons, and micro LEDs are brighter than OLEDs and LCDs; based on higher electron mobility, micro LEDs can switch at nanoseconds (ns) grade. Due to the limitations of the manufacturing process, the micro LED is only suitable for small screens in the early stage, for example, it is especially suitable for AR/VR applications, including goggles for entertainment.

AR/VR's requirements for display brightness, contrast, pixel density and response are much higher than those of mobile phone consumer electronics products. It is technically difficult for LCD and OLED to meet the needs of such applications. Many consumers have reported that the current AR/VR applications are prone to dizziness and lack of immersion. In fact, this is largely limited by the technology itself of LCD and OLED. The application of micro LED in the field of AR/VR has significantly overcome this problem. Perhaps the key to the future development of AR/VR will depend on breakthroughs in micro LED technology.

In addition, the miniaturization of micro LED chips is conducive to the softness and transparency of the panel. Chitron Technology has demonstrated a soft + transparent screen. "Softness", "transparency", and "foldable" have been the hotspots of screen display technology over the past two years, and to some extent are the keys to achieving industrial breakthroughs.

Analysts have learned from LED chip manufacturers upstream in the panel supply chain, that early applications of micro LEDs will focus on wearable devices, AR, VR, and automotive small screen products. This is logical from a technical point of view.

It is worth mentioning that although the micro LED has many technical advantages over LCD/OLEDs, some of these advantages are still in the theoretical stage. One representative advantage is the external quantum efficiency (EQE) - which is the luminous efficiency. Compared with LCDs, the screen structure of micro LED displays does not include the liquid crystal, color filter, and polarizer. Compared with OLEDs, they do not require complex packaging technology. In theory, the luminous efficiency of micro LED displays is much higher than LCDs or OLEDs.

However, the extremely small size of micro LEDs makes them very susceptible to sidewall effects - an engineering issue that arises in the manufacturing process. So the actual EQE of micro LEDs is extremely low, and may not even be comparable to LCD or OLED. The existence of sidewall effects also makes it more difficult for micro LEDs to produce ideal large-screen applications. Therefore, the existing micro LED solutions on the market are far from reflecting the technical advantages of micro LED itself.

Complementary Application with LCD/OLED

Various technical challenges of micro LEDs are difficult problems that many market players are trying to solve. The technical characteristics of micro LEDs will also determine the changes that will need to be made in the display industry in the future. The miniaturization of micro LEDs will further tilt panel manufacturing towards semiconductor technology.

CMOS is limited to small size screens because CMOS faces cost issues when being produced for large-size screens. Therefore, amorphous silicon and low temperature polysilicon TFTs are still the main technologies being used for the manufacture of large-screen micro LEDs.

Early observations of micro LEDs from Hendy Consulting suggest that there may be a value shift in the micro LED supply chain. This is determined by its technical characteristics. As micro LEDs gradually move closer to IC manufacturing, they challenge the status of traditional panel manufacturers.

It is expected that there will be four possible developments in the future of the display industry: the first is that traditional industry players (such as Samsung and LG) will remain at the center of the industry, but their value will be diluted; the second is that manufacturers with vertical integration capabilities, such as LuxVue, (acquired by Apple), and Glo AB (invested in by Google), will occupy dominant positions in the micro LED world; the third is that the composition of the new industrial structure and its value may be transferred to LED chip manufacturers, semiconductor manufacturers and enterprises holding key IP (multi-party cooperation); the fourth is that micro LED may not become the mainstream of the market.

Over the past two years, micro LED related investments are increasing on a large scale in South Korea, Taiwan, and China, with upstream and downstream companies in the industry actively cooperating. Before 2018, the market players of micro LED were independent, and different companies were taking very different technical approaches to development.

Considering that micro LED manufacturing technology may need to be application-oriented, customized manufacturing processes will need to be developed which may be very different from LCD/OLED manufacturing technologies. Independent management is not conducive to the market development of micro LED, as there are various technical approaches being taken which have no common standards for technology. Although the industry is in its early stages of development, beginning in 2020, there has been a lot of cooperation in the industry, which is a sign that micro LEDs are maturing.

The market variables are very large, and ESMC analysts believe that the industry development direction analyzed by Hendy Consulting may be too simplistic. In their view, not only the changes in market investment and cooperation trends over the past 1-2 years, but also the possibilities for long-term development of micro LEDs in the future, point to many unforeseen challenges and possibilities.

Just as OLED did not completely replace LCD in the past, as a technology with development potential in small screens and AR/VR in its early stages, micro LED is very likely to coexist with OLED and LCD for a long time. But applications of the three will be different. For example, micro LED will focus on the small screen and AR/VR market, eating into the value of OLED and LCD in the high-end market. Although the market size of OLED and LCD will shrink, the three will form a subtle complementary relationship in terms of technology and market, rather than micro LED replacing OLED or LCD.

Published by May 18, 2022 Source :EETimes

Further reading

You might also be interested in ...

Headline
Trend
Innovation in the Medical Consumables Industry Amidst Global Trends
The global healthcare industry is currently undergoing a pivotal paradigm shift. Every macroeconomic trend—from demographic changes, the geopolitical reshaping of supply chains, and the convergence of biotechnology and digitalization, to the urgent demand for environmental sustainability—profoundly impacts the dynamics and trajectory of the medical device market. Against this backdrop, the medical consumables industry must not merely adapt; it must proactively lead innovation and become a key driver in building resilient healthcare defenses.
Headline
Trend
From Components to Systems: Unveiling the Core Drivers of Robotics Industry Trends
Artificial intelligence and automation technologies are advancing at a rapid pace, driving large‑scale deployments of robots across manufacturing, healthcare, logistics, and service sectors. This momentum is propelling overall industry upgrades and operational efficiency leaps. Amid this wave, mastering the manufacture of high‑precision, high‑reliability core components has become the decisive factor in market competitiveness.
Headline
Trend
The Purifying Force Between Industries: The Evolution and Trends of Cutting Fluid Recycling Systems
Over the past decade, cutting fluid recycling and regeneration technologies have evolved from auxiliary support services into essential core equipment and processes within manufacturing. Recycling and reusing cutting fluids reduce raw material and water waste, making production processes more aligned with circular economy principles. According to market forecasts, the global cutting fluid market size will reach USD 3.78 billion in 2024 and is expected to grow to USD 5.64 billion by 2033, with a compound annual growth rate (CAGR) of approximately 4.3%. Among this, the market for regeneration equipment and treatment services is expanding particularly rapidly, reaching about USD 1.31 billion in 2024 and projected to double to USD 2.61 billion by 2033, with a CAGR as high as 7.8%.
Headline
Trend
Future Trends and Key Technological Breakthroughs in Plastic Recycling Equipment
As global environmental awareness continues to grow, the plastic recycling industry is presented with new development opportunities. However, the sector still faces multiple challenges, including improving recycling rates, efficiently sorting various types of plastics, and reducing operational costs.Plastic recycling involves sorting, cleaning, and processing waste plastics into reusable materials, helping reduce pollution and promote resource reuse.
Headline
Trend
The Shift to Onshoring: How Taiwan’s Supply Chain Strength Is Drawing Global Investment
Recently, increasing geopolitical tensions and global supply chain disruptions resulting from the pandemic have caused multinational corporations to rethink the structure of their supply chains. To mitigate risks and improve resilience, a growing number of manufacturers are shifting their operations from offshoring to onshoring and nearshoring. Thanks to its robust manufacturing ecosystem, strategic location, and technological expertise, Taiwan has emerged as a key destination for advanced manufacturing and high-value component production. Backed by a highly skilled workforce, resilient infrastructure, and advanced manufacturing capabilities, Taiwan is deeply integrated into global technology supply chains and offers stable, tech-driven production networks. These strengths position Taiwan as an ideal onshoring partner and are drawing renewed global investment.
Headline
Trend
Custom Mold and Die Services in Southeast Asia: Taiwan’s Competitive Edge
Custom tooling is the foundation of precision manufacturing, enabling the production of everything from smartphone casings and automotive parts to packaging components and medical devices. In this fast-growing market, Taiwan had remained a trusted leader, delivering advanced tooling solutions that meet the speed, complexity, and quality demands of modern industry.
Headline
Trend
Taiwan's E-Bike Export Surge: Key Markets and Trends Driving Growth
Taiwan's e-bike industry has experienced significant fluctuations in recent years. After reaching a peak in 2022, exports faced a downturn in 2024, with a 47% decline in e-bike exports compared to the previous year. Despite these challenges, the industry is showing signs of recovery and adaptation, positioning itself for future growth. Taiwan has rapidly emerged as a global leader in this booming sector. Once primarily recognized for traditional bicycle manufacturing, Taiwan has transformed into a high-tech hub for premium electric mobility solutions.
Headline
Trend
Taiwan's Strategic Role in Global Data Storage and Memory Supply Chains
With its robust semiconductor industry, advanced manufacturing capabilities, and strategic investments, Taiwan contributes significantly to the production and innovation of memory technologies essential for various applications, from consumer electronics to data centers.
Headline
Trend
Taiwan’s Medical Device Manufacturing: The Medical Devices Act and Its Global Significance
In recent years, Taiwan has emerged as a significant player in the global medical device industry—an ascent shaped not only by its advanced manufacturing capabilities but also by bold regulatory transformation. At the heart of this transformation is the Medical Devices Act, a landmark piece of legislation that redefined how medical technologies are developed, approved, and marketed within Taiwan. Driven by the need to align with international standards and respond to the growing complexity of modern medical technologies, the Act has introduced a risk-based regulatory framework, streamlined approval processes, and facilitated global market access. These reforms have strengthened Taiwan’s position as a competitive and trusted source of medical devices for global healthcare markets. Taiwan's medical device industry is now undergoing rapid growth, propelled by this regulatory clarity, continued investment in high-tech innovation, and rising global demand for safe, effective, and export-ready medical solutions. For manufacturers and investors looking to access the international medical device market, Taiwan offers a strategically evolving landscape that is both business-friendly and globally connected.
Headline
Trend
Taiwan’s Strategic Role in the Global Solar and Battery Market: Opportunities and Innovations
Taiwan’s solar generation reached 12.9 billion kWh in 2023, providing almost 48% of Taiwan’s total renewable energy generation. The focus of the government on energy security and sustainability aligns with the expansion of solar energy infrastructure. The growing electricity demand is pushing the need for additional solar photovoltaic (PV) installations, particularly in industrial and commercial sectors, which are significant consumers of electricity in Taiwan. Moreover, the energy requirements of the industrial sector are driving the adoption of large-scale solar PV projects. In parallel, Taiwan's battery market is expected to reach USD 0.77 billion by 2025 and grow at a CAGR of 14.3% to USD 1.49 billion by 2030. The government plans to accumulate 590 MW of battery-based energy storage by 2025, with significant contributions from both public and private sectors.
Headline
Trend
Powering the Future: New Energy Vehicles, Sustainable Manufacturing, and Challenges
In the quest for a sustainable and eco-friendly future, the automotive industry is witnessing a profound transformation with the emergence of New Energy Vehicles. New Energy Vehicles, commonly known as NEVs, encompass a wide range of vehicles powered by alternative energy sources or a combination of traditional and renewable energy technologies. The implementation of sustainable manufacturing practices and collaboration among stakeholders presents challenges for NEV development as well as great potential for market growth.
Headline
Trend
Charging Ahead: Recharging Infrastructure in the Electric Vehicle Industry
As the electric vehicle (EV) revolution gains momentum worldwide, one of the critical pillars supporting this transition is the development of a robust recharging infrastructure network. This network plays a pivotal role in the widespread adoption of electric vehicles, ensuring convenience, accessibility, and sustainability for EV owners. Factors contributing to the acceptance of EVs and their associated recharging infrastructure include environmental awareness, advancements in battery technology, vehicle design, the expanding range of available EV models, and the implementation of government incentives to promote these new technologies.
Agree