A Zero-Waste Era that Considers Economic Growth
Trend

A Zero-Waste Era that Considers Economic Growth

In the past, excessive consumption, wanton mining, indiscrete manufacturing, and careless abandonment of wastes, led to the rapid depletion of natural resources. Now, the pursuit of a circular economy, with the goal of zero waste through recycling of resources, is being implemented in an attempt to solve environmental problems.
Published: Aug 11, 2021
A Zero-Waste Era that Considers Economic Growth

What Is A Circular Economy?

Based on the core of renewable energy sources are used and systems thinking, a circular economy is an economic system of closed loops in which raw materials, components and products lose their value as little as possible.

A circular economy has been the trend over the past ten years, and the economic structure is centered on natural resources. A circular economy refers to meeting demand changes while at the same time reducing waste of limited resources. In contrast to the end-of-life concept for products in a linear economy, the circular economy emphasizes recycling, the use of renewable energy resources, the refusal to use toxic chemicals that hinder the environment, and the redesigning of materials, products, and business models to eliminate waste and enable more efficient use of resources.

A “circular economy” redefines products and services by designing an industrial system that recovers and reproduces materials, and replaces the end-of-the-life cycle with recycling. At the same time, a circular economy minimizes the negative impact of waste on the environment.

Reducing resource consumption and waste are goals of the circular economy. Also, marine waste caused by disposable plastic waste products, as well as the plastic particles that result from these wastes, pose major environmental problems that need to be solved. About 300 million tons of plastic waste are generated every year worldwide, and only 12% is recycled. Although the plastic recycling rate in Taiwan is about 30%, the current recycling technology still uses mainly physical recycling methods like sorting, cleaning, crushing, pelletizing, and reprocessing of materials into new products.  Physical recycling technology has its limitations. Due to the deterioration of the plastic, most collected plastics can only be made into black products; products with a reduced level of quality. If waste plastic containers are mixed, it is not easy to effectively sort them and they cannot be used.

Plastic recycling technology is making great progress. In the next 10 years, waste treatment technology will gradually be transformed. Technological breakthroughs will lead to the development of recyclable plastics, bio-plastics, and new raw materials of high-value. Mainstream plastics will be both practical and environmentally friendly.

In terms of waste plastic treatment technology, chemical recycling has become the latest trend. Through chemical depolymerization, impurities and coloring materials in the plastic are removed, and the plastic is converted into monomers or oligomer materials, and then re-polymerized into new plastic materials.

Waste plastics must be properly handled, and new plastic products must be made with proper materials to achieve the goal of zero waste. The development of marine decomposable plastics will be a technology with great potential. Due to the low temperature of seawater and the difference in decomposition environments, it is more difficult for the ocean to decompose plastics.

The Importance of A Circular Economy

With limited energy resources and sustained economic development, countries compete fiercely for resources such as energy and minerals. The current economic development model excessively consumes resources and produces large amounts of waste. The global consumption of raw materials has continued to increase over the past 40 years. According to the data of about 150 countries studied by the International Environmental Think Tank Global Ecological Footprint Network, from 1961 to 2013, if a country's ecological footprint exceeded its biological capacity (the degree of burden on nature), it was considered to have an ecological deficit. If the current standard of living is maintained till 2030, humanity's demand for resources would create an ecological footprint that would require two times the earths present resources.

In recent years, all countries have attached importance to the issue of a circular economy and actively promoted it as a means of promoting industrial development, coping with a scarcity of resources, and reducing environmental impacts. Taiwan’s lack of natural resources, coupled with its small land area and large population, has had a heavy environmental impact. With a high degree of dependence on imported energy resources, there is an urgent need to break through resource constraints and increase resource productivity by promoting a circular economy.

The Circular Economy Models

The new circular economy models are not just about waste recycling and reuse, but is about redefining waste, redesigning products and processes, changing consumer habits, and using new technologies to bring resources, raw materials, and waste back to the industry chain. Innovative business models that are different from the traditional model of continuous consumption of raw materials need to be developed in order to greatly reduce energy and resource consumption and waste generation.

  1. Recycling Resource Supply Circular Economy Model:
    The recycling resource supply model refers to the recycling of the entire production and consumption system. It is a system designed to completely renew, recycle, or recover materials. Companies can use this model to replace linear resource consumption, reduce the use of scarce resources, reduce resource waste, and improve resource use efficiency.
  2. Resource Recycling Circular Economy Model:
    This model mainly refers to when a product goes through its life cycle to its end, and then goes through innovative recycling or upgrading to re-create new value. The traditional resource recycling method recycles product waste to obtain the same or higher value. Resource recycling not only involves recycling final items but can extended to industrial symbiosis and energy resource integration as well. Especially for companies that produce large amounts of by-products or waste, the cradle-to-cradle cycle can enable them to reduce waste generation, reduce costs, and maximize the economic benefits of recycling.
  3. Product Life Extension Circular Economy Model:
    The product life extension model is to extend the life cycle of products or assets through maintenance, upgrades, re-manufacturing, and resales, so that companies can maintain long-term economic benefits, and upgrade product-specific functions and parts to improve product performance.
  4. Shared Platform Circular Economy Model:
    The purpose is to make full use of resources. The so-called sharing refers to the concept of using idle resources to the extreme; the so-called platform is a bridge between resource providers and resource demanders. The combination of the two can promote the sharing and use of resources and products between individuals or organizations, reduce resource waste so that resources can be recycled and reused, helping to share products with overcapacity and underutilization, increase the value of resource recycling, and maximize the overall utility change.
  5. Product as A Service Circular Economy Model:
    The product-as-a-service model is renting instead of buying, changing the current trading logic. The product is leased by one or more customers or the concept of user payment is adopted. Providing products with better durability and offering upgrading, encourages customers to give up the original concept of ownership of items. By selling services instead of selling products, companies can make products that last longer. Product durability and failure rate is no longer a risk to consumers. Consumers can also promote a circular economy. This way enterprises are more willing to manufacture durable products and are more willing to recycle and reuse them.

With the evolution of the concept of a circular economy, development opportunities and fields have become more diversified. In the future, in addition to maintaining the existing foundations for resource recovery, waste reduction, and promotion of energy resource integration, the industrial chain, technical standards, social resources, and government policies should be combined with the sustainable development of innovative thinking of a circular economy. With the breakthrough of a circular economy, we have constructed a path for development. With the adoption of innovative business models, a sharing economy, circular agriculture, and other operation modes, we have entered a new era of the circular economy, further expanding industrial development and environmental protection.

Published by Aug 11, 2021 Source :scitechvista, Source :itri

Further reading

You might also be interested in ...

Headline
Trend
Innovation in the Medical Consumables Industry Amidst Global Trends
The global healthcare industry is currently undergoing a pivotal paradigm shift. Every macroeconomic trend—from demographic changes, the geopolitical reshaping of supply chains, and the convergence of biotechnology and digitalization, to the urgent demand for environmental sustainability—profoundly impacts the dynamics and trajectory of the medical device market. Against this backdrop, the medical consumables industry must not merely adapt; it must proactively lead innovation and become a key driver in building resilient healthcare defenses.
Headline
Trend
From Components to Systems: Unveiling the Core Drivers of Robotics Industry Trends
Artificial intelligence and automation technologies are advancing at a rapid pace, driving large‑scale deployments of robots across manufacturing, healthcare, logistics, and service sectors. This momentum is propelling overall industry upgrades and operational efficiency leaps. Amid this wave, mastering the manufacture of high‑precision, high‑reliability core components has become the decisive factor in market competitiveness.
Headline
Trend
The Purifying Force Between Industries: The Evolution and Trends of Cutting Fluid Recycling Systems
Over the past decade, cutting fluid recycling and regeneration technologies have evolved from auxiliary support services into essential core equipment and processes within manufacturing. Recycling and reusing cutting fluids reduce raw material and water waste, making production processes more aligned with circular economy principles. According to market forecasts, the global cutting fluid market size will reach USD 3.78 billion in 2024 and is expected to grow to USD 5.64 billion by 2033, with a compound annual growth rate (CAGR) of approximately 4.3%. Among this, the market for regeneration equipment and treatment services is expanding particularly rapidly, reaching about USD 1.31 billion in 2024 and projected to double to USD 2.61 billion by 2033, with a CAGR as high as 7.8%.
Headline
Trend
Future Trends and Key Technological Breakthroughs in Plastic Recycling Equipment
As global environmental awareness continues to grow, the plastic recycling industry is presented with new development opportunities. However, the sector still faces multiple challenges, including improving recycling rates, efficiently sorting various types of plastics, and reducing operational costs.Plastic recycling involves sorting, cleaning, and processing waste plastics into reusable materials, helping reduce pollution and promote resource reuse.
Headline
Trend
The Shift to Onshoring: How Taiwan’s Supply Chain Strength Is Drawing Global Investment
Recently, increasing geopolitical tensions and global supply chain disruptions resulting from the pandemic have caused multinational corporations to rethink the structure of their supply chains. To mitigate risks and improve resilience, a growing number of manufacturers are shifting their operations from offshoring to onshoring and nearshoring. Thanks to its robust manufacturing ecosystem, strategic location, and technological expertise, Taiwan has emerged as a key destination for advanced manufacturing and high-value component production. Backed by a highly skilled workforce, resilient infrastructure, and advanced manufacturing capabilities, Taiwan is deeply integrated into global technology supply chains and offers stable, tech-driven production networks. These strengths position Taiwan as an ideal onshoring partner and are drawing renewed global investment.
Headline
Trend
Custom Mold and Die Services in Southeast Asia: Taiwan’s Competitive Edge
Custom tooling is the foundation of precision manufacturing, enabling the production of everything from smartphone casings and automotive parts to packaging components and medical devices. In this fast-growing market, Taiwan had remained a trusted leader, delivering advanced tooling solutions that meet the speed, complexity, and quality demands of modern industry.
Headline
Trend
Taiwan's E-Bike Export Surge: Key Markets and Trends Driving Growth
Taiwan's e-bike industry has experienced significant fluctuations in recent years. After reaching a peak in 2022, exports faced a downturn in 2024, with a 47% decline in e-bike exports compared to the previous year. Despite these challenges, the industry is showing signs of recovery and adaptation, positioning itself for future growth. Taiwan has rapidly emerged as a global leader in this booming sector. Once primarily recognized for traditional bicycle manufacturing, Taiwan has transformed into a high-tech hub for premium electric mobility solutions.
Headline
Trend
Taiwan's Strategic Role in Global Data Storage and Memory Supply Chains
With its robust semiconductor industry, advanced manufacturing capabilities, and strategic investments, Taiwan contributes significantly to the production and innovation of memory technologies essential for various applications, from consumer electronics to data centers.
Headline
Trend
Taiwan’s Medical Device Manufacturing: The Medical Devices Act and Its Global Significance
In recent years, Taiwan has emerged as a significant player in the global medical device industry—an ascent shaped not only by its advanced manufacturing capabilities but also by bold regulatory transformation. At the heart of this transformation is the Medical Devices Act, a landmark piece of legislation that redefined how medical technologies are developed, approved, and marketed within Taiwan. Driven by the need to align with international standards and respond to the growing complexity of modern medical technologies, the Act has introduced a risk-based regulatory framework, streamlined approval processes, and facilitated global market access. These reforms have strengthened Taiwan’s position as a competitive and trusted source of medical devices for global healthcare markets. Taiwan's medical device industry is now undergoing rapid growth, propelled by this regulatory clarity, continued investment in high-tech innovation, and rising global demand for safe, effective, and export-ready medical solutions. For manufacturers and investors looking to access the international medical device market, Taiwan offers a strategically evolving landscape that is both business-friendly and globally connected.
Headline
Trend
Taiwan’s Strategic Role in the Global Solar and Battery Market: Opportunities and Innovations
Taiwan’s solar generation reached 12.9 billion kWh in 2023, providing almost 48% of Taiwan’s total renewable energy generation. The focus of the government on energy security and sustainability aligns with the expansion of solar energy infrastructure. The growing electricity demand is pushing the need for additional solar photovoltaic (PV) installations, particularly in industrial and commercial sectors, which are significant consumers of electricity in Taiwan. Moreover, the energy requirements of the industrial sector are driving the adoption of large-scale solar PV projects. In parallel, Taiwan's battery market is expected to reach USD 0.77 billion by 2025 and grow at a CAGR of 14.3% to USD 1.49 billion by 2030. The government plans to accumulate 590 MW of battery-based energy storage by 2025, with significant contributions from both public and private sectors.
Headline
Trend
Powering the Future: New Energy Vehicles, Sustainable Manufacturing, and Challenges
In the quest for a sustainable and eco-friendly future, the automotive industry is witnessing a profound transformation with the emergence of New Energy Vehicles. New Energy Vehicles, commonly known as NEVs, encompass a wide range of vehicles powered by alternative energy sources or a combination of traditional and renewable energy technologies. The implementation of sustainable manufacturing practices and collaboration among stakeholders presents challenges for NEV development as well as great potential for market growth.
Headline
Trend
Charging Ahead: Recharging Infrastructure in the Electric Vehicle Industry
As the electric vehicle (EV) revolution gains momentum worldwide, one of the critical pillars supporting this transition is the development of a robust recharging infrastructure network. This network plays a pivotal role in the widespread adoption of electric vehicles, ensuring convenience, accessibility, and sustainability for EV owners. Factors contributing to the acceptance of EVs and their associated recharging infrastructure include environmental awareness, advancements in battery technology, vehicle design, the expanding range of available EV models, and the implementation of government incentives to promote these new technologies.
Agree