SASE Access Architecture Takes Center Stage of the Future of Cloud Security
Trend

SASE Access Architecture Takes Center Stage of the Future of Cloud Security

Remote access and cloud computing access have become the new normal of global business after the epidemic. Enterprises are faced with many problems such as hybrid cloud configuration, diversified network access, key data security protection, and network access management.
Published: Jul 05, 2023
SASE Access Architecture Takes Center Stage of the Future of Cloud Security

How to Remote Access?

"Remote access" network security protection is the most concerned market. Mobile users access important enterprise applications, transfer key enterprise application data to cloud computing, or enterprise adopts hybrid cloud architecture, all of which connect the network infrastructure. The demand for the integration of online functions and network security functions has emerged. In response to this trend, Gartner has defined a SASE (Secure Access Service Edge) model based on cloud service SD-WAN technology and centered on user identity, which is considered the most important development trend of network security access architecture.

Remote access and cloud computing access have become the new normal of global business after the epidemic. Enterprises are faced with many problems such as hybrid cloud configuration, diversified network access, key data security protection, and network access management. Secure Access Service Edge (SASE) seems to be the best solution for cloud security at present. It integrates the needs of today’s enterprises for the network as a service and information security as a service and integrates comprehensive wide area network WAN functions (including SD-WAN, CDN, etc.) Integrating with network and cloud security functions (such as SWG, CASB, FWaaS, and ZTNA), is based on user identity (maybe specific individuals, branch employees, third-party vendors, specific IoT devices) at the edge of the network. Network access permissions are shunted, and then applications or smart data are accessed directly to corporate data centers or public cloud applications or platforms, instead of importing network traffic to the head office and then transferring it to the cloud, which would increase data transmission risks from attack.

SASE network edge security access service architecture introduction:

Under the impact of the 2020 epidemic, VPN (Enterprise Virtual Private Network) was the first remote access solution for enterprises. However, with the new normal operating model of a remote office, enterprises are accelerating the deployment of many cloud services and applications. With the rapid development of cloud data centers and mobile offices, VPNs are facing great challenges by breaking the familiar network boundary protection. Only by establishing a "trusted" security management model can the user's authentication and authorization be credible, and the information flow and information security risks can be visible, controllable, and manageable.

The Zero Trust network security framework (Zero Trust) believes that any network access requirements should be preset to be untrustworthy, and only after authentication can they be accessed by the management policy authority. However, the zero-trust architecture does not refer to a specific technology, but the concept of application integration of multiple technologies. Therefore, the SASE (Secure Access Service Edge) market has become the best practice for "zero-trust" security in enterprises now.

What is SASE?

SASE is to implement identity management on the terminal equipment and the edge of the network, while network traffic is diverted to the application cloud platform or the data center in the enterprise according to the identity management policy, and the network security functions and equipment are all Built-in cloud solutions. Especially in the long-distance working mode after the epidemic and the advent of the 5G era, this trend will become more and more obvious, and the market demand will continue to grow. Under the new normal, the use of traditional network access mode in this environment will bring very complex network management configuration problems. With SASE architecture, wide area network connection capabilities (such as SD-WAN) and network security protection capabilities (such as SWG, CASB, FWaaS) are integrated, thereby effectively reducing the complexity of network control. Not only can it provide a flexible and expandable network, but it can also provide software-defined security access services based on user rights policies. This flexible network provides unprecedented network visibility and manageability for the security teams of digitally transformed enterprises. The network connection can be precisely specified according to the user identity and the context of the packet content. The security team can provide secure data access, QoS performance, reliability, and security for mobile users, and branch teams, with cloud-based application services, to safely realize the dynamic storage required for digital transformation.

The SASE network edge secure access service architecture has the following characteristics:
  1. Focus on user identity: Network Edge Secure Access Service (SASE) is a new center for using identity as the access decision-making center, not the access authority of the enterprise data center. Therefore, network access permissions are based on identities such as user identity, connected device identification, and application access permissions, rather than the IP address or geographic location of the device as in the past. It is this logic-level conversion of defined policies that greatly simplifies security policy management.
  2. Take the cloud application as the native architecture: The biggest assumption of SASE is that enterprises will gradually cloud important data and services, or directly adopt public cloud SaaS services (such as CRM, Mail, office software...), so they are outside the company. Mobile users or overseas branch offices will not redirect all network traffic back to the headquarters due to the use of VPN, nor will they allow free access to wide-area network services and lose network security protection. SASE makes full use of the main features of cloud computing in its architecture, such as flexibility, self-adjustment, automation, self-healing ability, and self-maintenance.
  3. Simplified architecture of network security equipment and configuration: By integrating secure access services from third-party security product providers, it will effectively reduce the total number of suppliers and reduce the number of physical or virtual security devices in overseas branches. This will reduce the number of agents required on the user’s terminal device. At the same time, the integration of supplier equipment will have the opportunity to use the "single-pass" architecture for network content inspection. Under this architecture, all packets at the network session layer will be decrypted at once and checked once in parallel using multiple security policy engines (FW, IDS) instead of multiple security check engines for serial check, which would increase the delay time. This will provide users with a consistent network access experience no matter where the user is, what site they are visiting, or where the site is located.
SASE architecture is the integration of network services and security services

The SASE architecture represents the structural integration trend of corporate networks and security systems. It is suitable for the trend of remote access and corporate services on the cloud under the current epidemic. It integrates security and network access and can be applied to any type of terminal access method. Enterprises do not need to place an agent on the device, and do not need to connect to the VPN and then reroute all traffic to the Internet. The SASE architecture brings security to each access service. It is estimated that by 2024, at least 40% of enterprises will adopt SASE-based cloud services.

It is not easy to build a complete SASE access service platform, as it requires extensive and diversified technologies. At present, few vendors can provide complete solutions in the market. This technology is still in its infancy, but as cloud services continue to grow, the SASE access service platform will drive the demand for edge computing equipment, and future growth is still expected.

Published by Jul 05, 2023 Source :moea

Further reading

You might also be interested in ...

Headline
Trend
The Application of Materials Science in Medical Device Manufacturing
In the field of medical device manufacturing, materials science plays a central role, directly impacting the safety, durability, and clinical performance of equipment. With the rapid development of smart healthcare and precision medicine, the demands for material performance have become increasingly stringent, particularly in the areas of biocompatibility, antimicrobial properties, and lightweight design.
Headline
Trend
Globalization and Steel-and-Glass Structures: Has the Architectural Divide Between East and West Disappeared?
In the West, concrete is a symbol of strength and efficiency, yet in the hands of a Japanese master, it can become a vehicle for Zen philosophy. In Asia, bamboo is revered as a sustainable material, but in the West, it is being redeveloped into a high-tech, eco-friendly solution. This article will delve into why architects from the East and West, even when faced with the same materials, can create two completely different architectural identities. The root of this lies in a fundamental difference in philosophy: the Eastern focus on living in harmony with nature and the Western drive to challenge physical limits.
Headline
Trend
Sewing Challenges in the Era of Sustainability: Balancing Durability and Eco-Friendliness
In discussions on sustainable textiles, sewing threads may seem insignificant, yet they play a crucial role. The material and production process of threads not only affect the durability of garments but also have long-term environmental impacts. In particular, under the influence of “fast fashion,” low-quality threads often break or fade easily, leading to garments being quickly discarded. In contrast, durable threads made from sustainable sources help extend the life cycle of clothing, reduce waste, and embody the concept of “slow fashion.”
Headline
Trend
Smart Breathing Masks: From Pandemic Essential to Intelligent Healthcare
The evolution of healthcare is a continuous response to the needs of the times. Breathing masks, a medical consumable we once paid little attention to, are a concrete example of this transformative wave. They are shifting from being a cold, professional tool to a gentle companion infused with intelligence and human-centered care.
Headline
Trend
Addressing Packaging Challenges Across Industries: Key Strategies for Food, Chemical, and Pharmaceutical Sectors
Do different industries face the same challenges? While the products of the food, chemical, and pharmaceutical industries vary greatly, their packaging lines share a common set of core challenges: how to ensure quality and safety while balancing high efficiency and regulatory compliance. As a result, customized packaging solutions have become the mainstream. Packaging machines are no longer single-function devices for "capping and filling" but rather comprehensive systems designed to meet the specific regulations of each industry.
Headline
Trend
The AI Revolution in Healthcare: Redefining the Future of Medicine
The explosive rise of artificial intelligence (AI) is ushering in an unprecedented transformation within the healthcare industry. No longer just a data analysis tool, AI has evolved into a smart assistant capable of deep collaboration with human experts and even operating independently. From diagnostic assistance to personalized treatment plans, AI is making healthcare more efficient, precise, and accessible to every patient.
Headline
Trend
Waterless Printing & Smart Tech: The New Eco-Standard for Label Printing
As global expectations for environmental protection rise, both consumers and brands are placing greater emphasis on the environmental impact of a product’s entire lifecycle—from production to recycling. Labels and stickers, as common products in the printing industry, have traditionally relied on large amounts of water, solvents, and energy in their production processes, creating a significant environmental burden. Today, sustainable printing is no longer an optional add-on but a key strategy for building brand trust and enhancing market competitiveness. Brands with clear eco-friendly initiatives are more likely to gain favor from both policymakers and the market, positioning themselves at the forefront of the global sustainability trend.
Headline
Trend
Modern Scaffolding: A Guide to Revolutionizing Construction Safety & Efficiency
From the construction of the ancient pyramids of Egypt to the rise of modern skyscrapers, one crucial temporary structure has always played the role of an unsung hero: scaffolding. This support system not only provides a safe foothold for workers but has also continuously evolved from a simple framework into a highly efficient, precise, and intelligent engineering system.
Headline
Trend
The Connection Between Medical Device Manufacturing and Machine Tools
The medical industry is experiencing rapid growth, driven by an aging population, rising chronic diseases, and technological advancements. The demand for high-precision medical devices is increasing, requiring manufacturing processes that ensure safety, reliability, and performance. Machine tools play a critical role in meeting these stringent requirements, enabling the production of complex medical instruments with exceptional accuracy.
Headline
Trend
Smart Manufacturing in Printing: A New Era of Efficiency, Precision, and Sustainability
For over a century, the printing industry has been regarded as a relatively mature and stable sector. However, as market demand diversifies and the wave of digitalization accelerates, printing is undergoing a profound transformation. In the era of Industry 4.0, intelligence and automation have become the keywords of competitiveness. From AI (Artificial Intelligence) to IoT (Internet of Things), and the rise of post-press automation, these technologies are quietly reshaping every step of the printing process. Printing is no longer just about reproducing text and images; it is evolving into an era of “smart manufacturing” that is more efficient, precise, and environmentally friendly.
Headline
Trend
Industrial Applications of CNC in the Robotic Arm Industry
CNC technology is an automated system that precisely controls machinery through computer programs, widely applied across various manufacturing sectors. The robotic arm industry encompasses both industrial uses (such as assembly and welding) and service applications (such as latte art or maintenance). In Japan, for instance, people with disabilities can remotely operate robots from home for work. This industry is visibly experiencing rapid growth. According to 2025 market data, the global robotics market is expected to reach USD 50.8 billion, with service robots accounting for USD 40.58 billion, demonstrating strong growth potential. The application of CNC in the robotic arm industry extends beyond component manufacturing to control systems and versatile task execution.
Headline
Trend
From Solar to Wind: The Heart of Green Energy
When discussing the energy transition, attention often falls on the surface area of solar panels, the blades of wind turbines, or the massive structures of nuclear power plants. Yet behind these world-changing energy systems, the critical components that drive solar, wind, and nuclear operations rely heavily on precision-manufactured CNC machines. Often hailed as the “brains of manufacturing,” these machines, with micron-level precision and highly automated capabilities, serve as the invisible engine powering technological breakthroughs and future innovations in the energy sector.
Agree