Artificial Intelligence in Self-driving Cars
Trend

Artificial Intelligence in Self-driving Cars

Through machine learning and neural networks, AI technologies power self-driving car systems that can drive autonomously. A self-driving car is a vehicle that uses a combination of sensors, cameras, radar and artificial intelligence (AI) to travel between destinations without a human operator. To qualify as fully autonomous, a vehicle must be able to navigate without human intervention to a predetermined destination over roads that have not been adapted for its use.
Published: Mar 23, 2022
Artificial Intelligence in Self-driving Cars

The beginning of the 20th century saw the automobile as mainly a plaything for the rich. To be able to own a car, you had to have a chauffeur conversant with the mechanical nuances of the models. Then Henry Ford entered the scene. He was not the inventor of the motor car but he worked on his determination to build a simple and an affordable car for the average American worker. This saw the birth of the assembly line production technique. This led to other automobile companies of the time to come up with innovations promoting faster, efficient and cheaper models.

With the advent of artificial intelligence, the automotive sector is now poised for another breakthrough in transportation with cars that can drive themselves. This time around, the race for supremacy is mostly concentrated amongst the corporate and technology giants – Tesla, Uber, Waymo, Ford, and General Motors.

Features of Cars with Self-Driving

Google's Waymo project is an example of a self-driving car that is almost entirely autonomous. It still requires a human driver to be present but only to override the system when necessary. It is not self-driving in the purest sense, but it can drive itself in ideal conditions. It has a high level of autonomy. Many of the cars available to consumers today have a lower level of autonomy but still have some self-driving features. The self-driving features that are available in many production cars as of 2019 include the following:

Hands-free steering: Centers the car without the driver's hands on the wheel. The driver is still required to pay attention.

Adaptive cruise control (ACC) down to a stop: Automatically maintains a selectable distance between the driver's car and the car in front.

Lane-centering steering: Intervenes when the driver crosses lane markings by automatically nudging the vehicle toward the opposite lane marking.

Levels of Autonomy in Self-Driving Cars

The U.S. National Highway Traffic Safety Administration (NHTSA) lays out five levels of automation, beginning with Level 0, where humans do the driving, through driver assistance technologies up to fully autonomous cars. Here are the five levels that follow Level 0 automation:

Level 1: An advanced driver assistance system (ADAS) aids the human driver with steering, braking or accelerating, though not simultaneously. An ADAS includes rearview cameras and features like a vibrating seat warning to alert drivers when they drift out of the traveling lane.

Level 2: An ADAS that can steer and either brake or accelerate simultaneously while the driver remains fully aware behind the wheel and continues to act as the driver.

Level 3: An automated driving system (ADS) can perform all driving tasks under certain circumstances, such as parking the car. In these circumstances, the human driver must be ready to retake control and is still required to be the main driver of the vehicle.

Level 4: An ADS can perform all driving tasks and monitor the driving environment in certain circumstances. In those circumstances, the ADS is reliable enough that the human driver needn't pay attention.

Level 5: The vehicle's ADS acts as a virtual chauffeur and does all the driving in all circumstances. The human occupants are passengers and are never expected to drive the vehicle.

Benefits of Artificial Intelligence in Self-Driving Cars

In order to understand how the integration of artificial technology will affect the automotive industry, let’s look at some of its expected positive impacts on our daily life.

Improved Vehicle Safety

The role of artificial intelligence in vehicle safety is visible in the current generation of cars. A majority of cars offer safety picks like emergency braking and lane control. Such features function through the AI system by using cameras and sensors.

Predictive Driving Capabilities

Although predictive driving is part of safety features in self-driving cars, the groundbreaking innovation deserves a separate mention. It is no longer limited to movies when cars can communicate with each other to exchange data.

The broadcast of information like road accidents, weather conditions or heavy traffic on a network will allow artificial intelligence in cars to counter situations via appropriate decisions.

Traffic Management

Traffic is the bane of every vehicle driver. No one likes to get stuck while going to work or a business meeting. This often leads to uncertain events due to hasty decisions and a lack of focus on the traffic rules.

Independence for Disabled People

Disabled people have to rely on others when it comes to driving. With self-driving cars, they can rely on artificial intelligence. Just look at the summon feature of Tesla. It allows cars to leave the parking premises and drive to the owner. In the future, such features can manifest creative innovation to make the daily life of disabled people almost independent.

Impact On Overall Cost

One may think that such innovation will come at a steep price. You may be right but think about the technology and all the advancements self-driving cars will bring to your driving experience. Moreover, when self-driving cars are standardized, you will have access to both budget and expensive variants.

Apart from the purchase expense, the maintenance and insurance premiums will go down as well. Since artificial intelligence is designed to operate cars safely, there won’t be many accidents. The system will also warn users of any prior maintenance issue before it leads to a breakdown or other expensive repairs.

Safety and Challenges of Self-Driving Cars

Autonomous cars must learn to identify countless objects in the vehicle's path, from branches and litter to animals and people. Other challenges on the road are tunnels that interfere with the Global Positioning System (GPS), construction projects that cause lane changes or complex decisions, like where to stop to allow emergency vehicles to pass.

The systems need to make instantaneous decisions on when to slow down, swerve or continue acceleration normally. This is a continuing challenge for developers, and there are reports of self-driving cars hesitating and swerving unnecessarily when objects are detected in or near the roadways.

With crashes also comes the question of liability, and lawmakers have yet to define who is liable when an autonomous car is involved in an accident. There are also serious concerns that the software used to operate autonomous vehicles can be hacked, and automotive companies are working to address cybersecurity risks.

In China, carmakers and regulators are adopting a different strategy to meet standards and make self-driving cars an everyday reality. The Chinese government is beginning to redesign urban landscapes, policy and infrastructure to make the environment more self-driving car-friendly. This includes writing rules about how humans move around and recruiting mobile network operators to take on a portion of the processing required to give self-driving vehicles the data they need to navigate. "National Test Roads" would be implemented. The autocratic nature of the Chinese government makes this possible, which bypasses the litigious democracy that tests are funneled through in America.

Published by Mar 23, 2022 Source :TechTarget, Source :dubizzle Cars Source :Analytics Insight

Further reading

You might also be interested in ...

Headline
Trend
Innovation in the Medical Consumables Industry Amidst Global Trends
The global healthcare industry is currently undergoing a pivotal paradigm shift. Every macroeconomic trend—from demographic changes, the geopolitical reshaping of supply chains, and the convergence of biotechnology and digitalization, to the urgent demand for environmental sustainability—profoundly impacts the dynamics and trajectory of the medical device market. Against this backdrop, the medical consumables industry must not merely adapt; it must proactively lead innovation and become a key driver in building resilient healthcare defenses.
Headline
Trend
From Components to Systems: Unveiling the Core Drivers of Robotics Industry Trends
Artificial intelligence and automation technologies are advancing at a rapid pace, driving large‑scale deployments of robots across manufacturing, healthcare, logistics, and service sectors. This momentum is propelling overall industry upgrades and operational efficiency leaps. Amid this wave, mastering the manufacture of high‑precision, high‑reliability core components has become the decisive factor in market competitiveness.
Headline
Trend
The Purifying Force Between Industries: The Evolution and Trends of Cutting Fluid Recycling Systems
Over the past decade, cutting fluid recycling and regeneration technologies have evolved from auxiliary support services into essential core equipment and processes within manufacturing. Recycling and reusing cutting fluids reduce raw material and water waste, making production processes more aligned with circular economy principles. According to market forecasts, the global cutting fluid market size will reach USD 3.78 billion in 2024 and is expected to grow to USD 5.64 billion by 2033, with a compound annual growth rate (CAGR) of approximately 4.3%. Among this, the market for regeneration equipment and treatment services is expanding particularly rapidly, reaching about USD 1.31 billion in 2024 and projected to double to USD 2.61 billion by 2033, with a CAGR as high as 7.8%.
Headline
Trend
Future Trends and Key Technological Breakthroughs in Plastic Recycling Equipment
As global environmental awareness continues to grow, the plastic recycling industry is presented with new development opportunities. However, the sector still faces multiple challenges, including improving recycling rates, efficiently sorting various types of plastics, and reducing operational costs.Plastic recycling involves sorting, cleaning, and processing waste plastics into reusable materials, helping reduce pollution and promote resource reuse.
Headline
Trend
The Shift to Onshoring: How Taiwan’s Supply Chain Strength Is Drawing Global Investment
Recently, increasing geopolitical tensions and global supply chain disruptions resulting from the pandemic have caused multinational corporations to rethink the structure of their supply chains. To mitigate risks and improve resilience, a growing number of manufacturers are shifting their operations from offshoring to onshoring and nearshoring. Thanks to its robust manufacturing ecosystem, strategic location, and technological expertise, Taiwan has emerged as a key destination for advanced manufacturing and high-value component production. Backed by a highly skilled workforce, resilient infrastructure, and advanced manufacturing capabilities, Taiwan is deeply integrated into global technology supply chains and offers stable, tech-driven production networks. These strengths position Taiwan as an ideal onshoring partner and are drawing renewed global investment.
Headline
Trend
Custom Mold and Die Services in Southeast Asia: Taiwan’s Competitive Edge
Custom tooling is the foundation of precision manufacturing, enabling the production of everything from smartphone casings and automotive parts to packaging components and medical devices. In this fast-growing market, Taiwan had remained a trusted leader, delivering advanced tooling solutions that meet the speed, complexity, and quality demands of modern industry.
Headline
Trend
Taiwan's E-Bike Export Surge: Key Markets and Trends Driving Growth
Taiwan's e-bike industry has experienced significant fluctuations in recent years. After reaching a peak in 2022, exports faced a downturn in 2024, with a 47% decline in e-bike exports compared to the previous year. Despite these challenges, the industry is showing signs of recovery and adaptation, positioning itself for future growth. Taiwan has rapidly emerged as a global leader in this booming sector. Once primarily recognized for traditional bicycle manufacturing, Taiwan has transformed into a high-tech hub for premium electric mobility solutions.
Headline
Trend
Taiwan's Strategic Role in Global Data Storage and Memory Supply Chains
With its robust semiconductor industry, advanced manufacturing capabilities, and strategic investments, Taiwan contributes significantly to the production and innovation of memory technologies essential for various applications, from consumer electronics to data centers.
Headline
Trend
Taiwan’s Medical Device Manufacturing: The Medical Devices Act and Its Global Significance
In recent years, Taiwan has emerged as a significant player in the global medical device industry—an ascent shaped not only by its advanced manufacturing capabilities but also by bold regulatory transformation. At the heart of this transformation is the Medical Devices Act, a landmark piece of legislation that redefined how medical technologies are developed, approved, and marketed within Taiwan. Driven by the need to align with international standards and respond to the growing complexity of modern medical technologies, the Act has introduced a risk-based regulatory framework, streamlined approval processes, and facilitated global market access. These reforms have strengthened Taiwan’s position as a competitive and trusted source of medical devices for global healthcare markets. Taiwan's medical device industry is now undergoing rapid growth, propelled by this regulatory clarity, continued investment in high-tech innovation, and rising global demand for safe, effective, and export-ready medical solutions. For manufacturers and investors looking to access the international medical device market, Taiwan offers a strategically evolving landscape that is both business-friendly and globally connected.
Headline
Trend
Taiwan’s Strategic Role in the Global Solar and Battery Market: Opportunities and Innovations
Taiwan’s solar generation reached 12.9 billion kWh in 2023, providing almost 48% of Taiwan’s total renewable energy generation. The focus of the government on energy security and sustainability aligns with the expansion of solar energy infrastructure. The growing electricity demand is pushing the need for additional solar photovoltaic (PV) installations, particularly in industrial and commercial sectors, which are significant consumers of electricity in Taiwan. Moreover, the energy requirements of the industrial sector are driving the adoption of large-scale solar PV projects. In parallel, Taiwan's battery market is expected to reach USD 0.77 billion by 2025 and grow at a CAGR of 14.3% to USD 1.49 billion by 2030. The government plans to accumulate 590 MW of battery-based energy storage by 2025, with significant contributions from both public and private sectors.
Headline
Trend
Powering the Future: New Energy Vehicles, Sustainable Manufacturing, and Challenges
In the quest for a sustainable and eco-friendly future, the automotive industry is witnessing a profound transformation with the emergence of New Energy Vehicles. New Energy Vehicles, commonly known as NEVs, encompass a wide range of vehicles powered by alternative energy sources or a combination of traditional and renewable energy technologies. The implementation of sustainable manufacturing practices and collaboration among stakeholders presents challenges for NEV development as well as great potential for market growth.
Headline
Trend
Charging Ahead: Recharging Infrastructure in the Electric Vehicle Industry
As the electric vehicle (EV) revolution gains momentum worldwide, one of the critical pillars supporting this transition is the development of a robust recharging infrastructure network. This network plays a pivotal role in the widespread adoption of electric vehicles, ensuring convenience, accessibility, and sustainability for EV owners. Factors contributing to the acceptance of EVs and their associated recharging infrastructure include environmental awareness, advancements in battery technology, vehicle design, the expanding range of available EV models, and the implementation of government incentives to promote these new technologies.
Agree