In The Decade Ahead, A Combination of Technologies Will Take Important Strides, Forward
Trend

In The Decade Ahead, A Combination of Technologies Will Take Important Strides, Forward

As discussed in Tech Trends 2019: Beyond the Digital Frontier, technology forces that are increasingly dependent on advanced connectivity capabilities also are reshaping enterprise architecture.
Published: Jul 21, 2020
In The Decade Ahead, A Combination of Technologies Will Take Important Strides, Forward

Proliferating mobile devices and sensors (commonly associated with the Internet of Things), autoscaling with serverless computing, AI, and automation that rely on exploding volumes of shared data require differentiated connectivity capabilities to achieve their transformative digital potential.

Existing connectivity technologies are expanding their reach as networks are built out and adoption grows. At the same time, the next generations of these technologies are appearing, with upgraded standards. Both of these trends are expanding and improving what we refer to as “advanced connectivity.” Besides, a new type of more revolutionary (and more capital-intensive) “frontier connectivity” is emerging, although it is likely to have a more limited geographic footprint in the decade ahead, barring the mass-market deployment of satellite coverage.

Advanced Connectivity Technology:

Existing connectivity technologies continue to proliferate and evolve, from backbone networks to the last mile that meets the end-user. In the network, for instance, providers are upgrading existing 4G infrastructure with low- to mid-frequency “non-standalone” 5G network overlay.1 The results of these upgrades will vary significantly depending on the spectrum used and the density of supporting infrastructure such as cell towers. But in general, these low- to mid-frequency 5G networks can offer significant improvements in speed and latency while supporting a greater density of connected devices. Meanwhile, fiber optic networks continue to expand, and the introduction of the new DOCSIS 3.X standard promises to bring the performance of cable broadband closer to that of fiber—and to do so over existing infrastructure. In the last mile of access, the next generation of Wi-Fi (Wi-Fi 6) will improve speeds while supporting many more connected devices. Technologies that use radio signals for tagging, tracking, and contactless short-range communication between devices (such as Bluetooth, NFC, and RFID sensors) are becoming more sophisticated. Low-power wide-area networks (LPWANs, with competing standards such as LoRa, NB-IoT, and SigFox) provide connectivity over broader areas and longer ranges. All of these technologies continue to improve in terms of affordability, functionality, and adoption.

Frontier Connectivity Technology:

Frontier technologies like high-band 5G and low-earth orbit satellite constellations represent a more radical departure.2 Designed to be the most ultra-fast mobile option, high-band 5G (often in the form of standalone 5G) promises to put the speed, latency, reliability, and security of fiber in the air, expanding what mobile devices can do. It offers a significant step-change in overall network performance from low- to mid-band 5G. Low-earth orbit (LEO) satellites could also deliver a breakthrough—not necessarily in network performance but in the breadth of coverage. By essentially beaming broadband down from space, they could bring coverage to remote parts of the world where the economics do not work for laying fiber or building networks of towers. However, providing coverage requires a constellation of many satellites orbiting at once, making viability uncertain. OneWeb and SpaceX are the only companies to launch test satellites (as of this writing), and no commercial services are yet available.

The advances described above are occurring alongside an expansion of hardware and software capabilities. Cloud computing will provide a processing backbone and storage capacity for use cases that require significant computational power. Edge computing will do the same while removing latency limitations. The new architecture of connectivity will also include private corporate networks. These connectivity and computing advances will enable cheaper and much more efficient “thin” devices connecting with the cloud and localized servers; they could become mainstream at the end of the decade for both consumers and businesses.

The promise of 5G has captured the attention of business leaders, policymakers, and the media. But how much of that promise is likely to be realized anytime soon?

With the first true high-band 5G networks already live, we set out to gain a realistic view of how and where connectivity could be deployed and what it can enable over the next 10 years. But 5G is not appearing in isolation. A new discussion paper, Connected World: An evolution in connectivity beyond the 5G evolution (PDF–10.3MB), takes a more expansive look that ranges from fiber and satellites to Wi-Fi and short-range technologies.

Beyond the implications for industry, connectivity also has ramifications for equity and society. Enabling more people to plug into global flows of information, communication, and services could add another $1.5 trillion to $2 trillion to GDP. Although gaps will remain, this trend could unlock greater human potential and prosperity in many developing nations.

Published by Jul 21, 2020 Source :deloitte.wsj.com Source :mckinsey.com

Further reading

You might also be interested in ...

Headline
Trend
Innovation in the Medical Consumables Industry Amidst Global Trends
The global healthcare industry is currently undergoing a pivotal paradigm shift. Every macroeconomic trend—from demographic changes, the geopolitical reshaping of supply chains, and the convergence of biotechnology and digitalization, to the urgent demand for environmental sustainability—profoundly impacts the dynamics and trajectory of the medical device market. Against this backdrop, the medical consumables industry must not merely adapt; it must proactively lead innovation and become a key driver in building resilient healthcare defenses.
Headline
Trend
From Components to Systems: Unveiling the Core Drivers of Robotics Industry Trends
Artificial intelligence and automation technologies are advancing at a rapid pace, driving large‑scale deployments of robots across manufacturing, healthcare, logistics, and service sectors. This momentum is propelling overall industry upgrades and operational efficiency leaps. Amid this wave, mastering the manufacture of high‑precision, high‑reliability core components has become the decisive factor in market competitiveness.
Headline
Trend
The Purifying Force Between Industries: The Evolution and Trends of Cutting Fluid Recycling Systems
Over the past decade, cutting fluid recycling and regeneration technologies have evolved from auxiliary support services into essential core equipment and processes within manufacturing. Recycling and reusing cutting fluids reduce raw material and water waste, making production processes more aligned with circular economy principles. According to market forecasts, the global cutting fluid market size will reach USD 3.78 billion in 2024 and is expected to grow to USD 5.64 billion by 2033, with a compound annual growth rate (CAGR) of approximately 4.3%. Among this, the market for regeneration equipment and treatment services is expanding particularly rapidly, reaching about USD 1.31 billion in 2024 and projected to double to USD 2.61 billion by 2033, with a CAGR as high as 7.8%.
Headline
Trend
Future Trends and Key Technological Breakthroughs in Plastic Recycling Equipment
As global environmental awareness continues to grow, the plastic recycling industry is presented with new development opportunities. However, the sector still faces multiple challenges, including improving recycling rates, efficiently sorting various types of plastics, and reducing operational costs.Plastic recycling involves sorting, cleaning, and processing waste plastics into reusable materials, helping reduce pollution and promote resource reuse.
Headline
Trend
The Shift to Onshoring: How Taiwan’s Supply Chain Strength Is Drawing Global Investment
Recently, increasing geopolitical tensions and global supply chain disruptions resulting from the pandemic have caused multinational corporations to rethink the structure of their supply chains. To mitigate risks and improve resilience, a growing number of manufacturers are shifting their operations from offshoring to onshoring and nearshoring. Thanks to its robust manufacturing ecosystem, strategic location, and technological expertise, Taiwan has emerged as a key destination for advanced manufacturing and high-value component production. Backed by a highly skilled workforce, resilient infrastructure, and advanced manufacturing capabilities, Taiwan is deeply integrated into global technology supply chains and offers stable, tech-driven production networks. These strengths position Taiwan as an ideal onshoring partner and are drawing renewed global investment.
Headline
Trend
Custom Mold and Die Services in Southeast Asia: Taiwan’s Competitive Edge
Custom tooling is the foundation of precision manufacturing, enabling the production of everything from smartphone casings and automotive parts to packaging components and medical devices. In this fast-growing market, Taiwan had remained a trusted leader, delivering advanced tooling solutions that meet the speed, complexity, and quality demands of modern industry.
Headline
Trend
Taiwan's E-Bike Export Surge: Key Markets and Trends Driving Growth
Taiwan's e-bike industry has experienced significant fluctuations in recent years. After reaching a peak in 2022, exports faced a downturn in 2024, with a 47% decline in e-bike exports compared to the previous year. Despite these challenges, the industry is showing signs of recovery and adaptation, positioning itself for future growth. Taiwan has rapidly emerged as a global leader in this booming sector. Once primarily recognized for traditional bicycle manufacturing, Taiwan has transformed into a high-tech hub for premium electric mobility solutions.
Headline
Trend
Taiwan's Strategic Role in Global Data Storage and Memory Supply Chains
With its robust semiconductor industry, advanced manufacturing capabilities, and strategic investments, Taiwan contributes significantly to the production and innovation of memory technologies essential for various applications, from consumer electronics to data centers.
Headline
Trend
Taiwan’s Medical Device Manufacturing: The Medical Devices Act and Its Global Significance
In recent years, Taiwan has emerged as a significant player in the global medical device industry—an ascent shaped not only by its advanced manufacturing capabilities but also by bold regulatory transformation. At the heart of this transformation is the Medical Devices Act, a landmark piece of legislation that redefined how medical technologies are developed, approved, and marketed within Taiwan. Driven by the need to align with international standards and respond to the growing complexity of modern medical technologies, the Act has introduced a risk-based regulatory framework, streamlined approval processes, and facilitated global market access. These reforms have strengthened Taiwan’s position as a competitive and trusted source of medical devices for global healthcare markets. Taiwan's medical device industry is now undergoing rapid growth, propelled by this regulatory clarity, continued investment in high-tech innovation, and rising global demand for safe, effective, and export-ready medical solutions. For manufacturers and investors looking to access the international medical device market, Taiwan offers a strategically evolving landscape that is both business-friendly and globally connected.
Headline
Trend
Taiwan’s Strategic Role in the Global Solar and Battery Market: Opportunities and Innovations
Taiwan’s solar generation reached 12.9 billion kWh in 2023, providing almost 48% of Taiwan’s total renewable energy generation. The focus of the government on energy security and sustainability aligns with the expansion of solar energy infrastructure. The growing electricity demand is pushing the need for additional solar photovoltaic (PV) installations, particularly in industrial and commercial sectors, which are significant consumers of electricity in Taiwan. Moreover, the energy requirements of the industrial sector are driving the adoption of large-scale solar PV projects. In parallel, Taiwan's battery market is expected to reach USD 0.77 billion by 2025 and grow at a CAGR of 14.3% to USD 1.49 billion by 2030. The government plans to accumulate 590 MW of battery-based energy storage by 2025, with significant contributions from both public and private sectors.
Headline
Trend
Powering the Future: New Energy Vehicles, Sustainable Manufacturing, and Challenges
In the quest for a sustainable and eco-friendly future, the automotive industry is witnessing a profound transformation with the emergence of New Energy Vehicles. New Energy Vehicles, commonly known as NEVs, encompass a wide range of vehicles powered by alternative energy sources or a combination of traditional and renewable energy technologies. The implementation of sustainable manufacturing practices and collaboration among stakeholders presents challenges for NEV development as well as great potential for market growth.
Headline
Trend
Charging Ahead: Recharging Infrastructure in the Electric Vehicle Industry
As the electric vehicle (EV) revolution gains momentum worldwide, one of the critical pillars supporting this transition is the development of a robust recharging infrastructure network. This network plays a pivotal role in the widespread adoption of electric vehicles, ensuring convenience, accessibility, and sustainability for EV owners. Factors contributing to the acceptance of EVs and their associated recharging infrastructure include environmental awareness, advancements in battery technology, vehicle design, the expanding range of available EV models, and the implementation of government incentives to promote these new technologies.
Agree