Developing the Industry 4.0 Model and Improving Industrial Resilience
Trend

Developing the Industry 4.0 Model and Improving Industrial Resilience

Smart manufacturing utilizes advanced manufacturing technology and provides solutions through AI, the Internet of Things, big data, cloud, edge computing, and other technologies to substitute the production process with an intelligent manufacturing model and customize products according to customer needs.
Published: Apr 12, 2022
Developing the Industry 4.0 Model and Improving Industrial Resilience

The Industrial Model of Industry 4.0:

Smart factories can quickly switch processes and mass-produce customized or even unique products at the same cost. Corporate branding or manufacturing scale is no longer a key advantage. When traditional supply chains break down, innovative enterprises rapidity grab the market with competitive and revolutionary business models that produce smart products.

The Development Background of Industry 4.0:

The rise and popularization of mechanization, electric power, and information technology (IT) have triggered three industrial revolutions successively, and have promoted major progress in the development of human civilization. The development of data communication technology and the breakthrough of computer computing power have driven the trend of digitalization. This has laid the foundation for, and triggered the fourth industrial revolution, also known as Industry 4.0. Industry 4.0 not only changes the methods of production and provision of services through smart factories and smart production, but transforms individual industries, according to their unique characteristics and needs, to each having their own unique Industry 4.0.

Key Applications for Industry 4.0

  1. Cyber-Physical System (CPS):
    Cyber-Physical System (CPS) is the key technology of Industry 4.0. Through computers, sensors, and the use of network technology, various devices, machines, and digital systems are interconnected. Through the communication and interaction between them, the virtual and physical worlds are seamlessly integrated. CPS also embeds computing and communication into physical operation programs, adding new intelligence and capabilities to physical systems. Real-time perception, dynamic control, and intelligent instant messaging services are provided. CPS has been implemented in many industrial fields, such as online and offline systems (O2O), the retail industry, omnichannel marketing, smart homes, transportation, security, environmental control, process control, and other fields, bringing economic, political and social benefits.
  2. Intelligent robots and machines:
    Robots have gradually replaced human labor. Industrial robots of various types and different purposes have not only grown rapidly in number but have also gradually become more intelligent, able to adapt, communicate and interact, and are gradually replacing human workflows in certain fields. With human-machine interfaces equipped with smart sensor capabilities, and humans working together to perform tasks, there will still be a significant increase in production capacity. This will have a huge impact on the kind of skills required and cost structure of factories.
  3. Industrial virtualization/automation:
    When building a new factory or producing new products in an existing factory area, Industry 4.0 will use virtual factories or products to prepare for physical mass production. If any process can be simulated and confirmed in the virtual environment first, it represents that the final solution is ready. Software parameters and numerical matrices can then be uploaded to the physical machine that controls mass production, and the physical operations can proceed. The virtual factory can use 3D technology to design production process and visualize the interaction of worker and machine.
  4. Big data:
    The factory of the future will generate vast amounts of data which will need to be stored, processed, and analyzed. In the Industry 4.0 environment, CPS can develop, manage, and make good use of massive data.  Interconnectivity of machines will aid machine intelligence, flexibility, and adjustment capabilities, allowing CPS to integrate industrial mass production, logistics and services. This will transform today's factories into highly competitive and economically promising Industry 4.0 factories. The integration of massive data and cloud computing is bound to lead to new types of information application models, thereby bringing about intelligent innovation.
  5. IT system:
     Today's IT systems have become the core of production systems. Industry 4.0 IT systems use the cloud, mobile devices, and big data to more closely link sub-systems, processing flows, interfacing internal and external modules, and network connections between suppliers and customers. Its complexity has also increased, forming intelligent supply chains which have been transformed into a super-large information systems that connect enterprises across regions. In the factory, the IT system will follow clear standard specifications to integrate software, hardware, storage equipment, and peripheral systems. These all connect to form a Cyber-Physical Production System (CPPS), which has the ability to control product characteristics and processing. Sensors interact with each other, and flexible machine operation programs can be changed in a short time to adjust production process, avoiding downtime and thereby greatly improving production efficiency.
  6. Artificial Intelligence:
    Artificial intelligence technology has become the core technology of smart manufacturing as it can automatically extract key features and regular patterns in manufacturing from a large amount of raw data. They can learn from mistakes that have occurred in the past, make predictions and give advance warnings. This will reduce downtime and improve process efficiency by making prompt adjustments to the production line. Artificial intelligence refers to the intelligence displayed by human-made machines, including natural language processing, planning, and learning, and reasoning and problem-solving.
    • Obtaining data: A large amount of required data is collected through cameras and sensors, such as for temperature and humidity.
    • Data preprocessing: The quality of the data collected will affect the learning model. If the learning has noisy data, it will inevitably affect the prediction results. Therefore, it is necessary to first preprocess the data collected into clean data.
    • Model establishment: The artificial intelligence model is composed of structures which imitate the structure and function of a biological neural network. These generate mathematical models which are used to evaluate operations. The model structures can be divided into the input, hidden, and output layers. Neurons between layers connect the layers. The neurons operate through an active, nonlinear function to avoid the linear relationship between the input and the output.
    • Prediction: After a period of feature extraction, the model can eventually numerically predict or classify unseen data. Usually, the prediction stage is faster than the training stage.

Impact of Industry 4.0:

The scope of Industry 4.0 is quite broad, including, Machine-to-machine (M2M) interaction and the Internet of Things (IoT). The rapid development of digital and network technology has brought a huge impact on various industries, making corporate strategies and business models increasingly challenging. In manufacturing, whether it is mass production of a unique product, or small-volume production of a unique customized product, Industry 4.0 can achieve the same level of quality and overall production capacity and efficiency.

Although intelligent production is emphasized in the era of Industry 4.0, human beings are still of great importance. Human input will shift to designing and planning mass production systems that cannot be replaced by the CPS system.

In smart factories themselves, workers will transform from being traditional machine operators to those who control, adjust, and make decisions on production programs, to optimize the production process. With the increase in knowledge-intensive output, the professional degree of labor required by smart factories will increase, and their cross-industry and cross-field capabilities will also need to be improved. Therefore, for enterprises, the cultivation of human resources will be an important key to success.

Published by Apr 12, 2022 Source :magazine

Further reading

You might also be interested in ...

Headline
Trend
The Application of Materials Science in Medical Device Manufacturing
In the field of medical device manufacturing, materials science plays a central role, directly impacting the safety, durability, and clinical performance of equipment. With the rapid development of smart healthcare and precision medicine, the demands for material performance have become increasingly stringent, particularly in the areas of biocompatibility, antimicrobial properties, and lightweight design.
Headline
Trend
Globalization and Steel-and-Glass Structures: Has the Architectural Divide Between East and West Disappeared?
In the West, concrete is a symbol of strength and efficiency, yet in the hands of a Japanese master, it can become a vehicle for Zen philosophy. In Asia, bamboo is revered as a sustainable material, but in the West, it is being redeveloped into a high-tech, eco-friendly solution. This article will delve into why architects from the East and West, even when faced with the same materials, can create two completely different architectural identities. The root of this lies in a fundamental difference in philosophy: the Eastern focus on living in harmony with nature and the Western drive to challenge physical limits.
Headline
Trend
Sewing Challenges in the Era of Sustainability: Balancing Durability and Eco-Friendliness
In discussions on sustainable textiles, sewing threads may seem insignificant, yet they play a crucial role. The material and production process of threads not only affect the durability of garments but also have long-term environmental impacts. In particular, under the influence of “fast fashion,” low-quality threads often break or fade easily, leading to garments being quickly discarded. In contrast, durable threads made from sustainable sources help extend the life cycle of clothing, reduce waste, and embody the concept of “slow fashion.”
Headline
Trend
Smart Breathing Masks: From Pandemic Essential to Intelligent Healthcare
The evolution of healthcare is a continuous response to the needs of the times. Breathing masks, a medical consumable we once paid little attention to, are a concrete example of this transformative wave. They are shifting from being a cold, professional tool to a gentle companion infused with intelligence and human-centered care.
Headline
Trend
Addressing Packaging Challenges Across Industries: Key Strategies for Food, Chemical, and Pharmaceutical Sectors
Do different industries face the same challenges? While the products of the food, chemical, and pharmaceutical industries vary greatly, their packaging lines share a common set of core challenges: how to ensure quality and safety while balancing high efficiency and regulatory compliance. As a result, customized packaging solutions have become the mainstream. Packaging machines are no longer single-function devices for "capping and filling" but rather comprehensive systems designed to meet the specific regulations of each industry.
Headline
Trend
Waterless Printing & Smart Tech: The New Eco-Standard for Label Printing
As global expectations for environmental protection rise, both consumers and brands are placing greater emphasis on the environmental impact of a product’s entire lifecycle—from production to recycling. Labels and stickers, as common products in the printing industry, have traditionally relied on large amounts of water, solvents, and energy in their production processes, creating a significant environmental burden. Today, sustainable printing is no longer an optional add-on but a key strategy for building brand trust and enhancing market competitiveness. Brands with clear eco-friendly initiatives are more likely to gain favor from both policymakers and the market, positioning themselves at the forefront of the global sustainability trend.
Headline
Trend
Modern Scaffolding: A Guide to Revolutionizing Construction Safety & Efficiency
From the construction of the ancient pyramids of Egypt to the rise of modern skyscrapers, one crucial temporary structure has always played the role of an unsung hero: scaffolding. This support system not only provides a safe foothold for workers but has also continuously evolved from a simple framework into a highly efficient, precise, and intelligent engineering system.
Headline
Trend
The Connection Between Medical Device Manufacturing and Machine Tools
The medical industry is experiencing rapid growth, driven by an aging population, rising chronic diseases, and technological advancements. The demand for high-precision medical devices is increasing, requiring manufacturing processes that ensure safety, reliability, and performance. Machine tools play a critical role in meeting these stringent requirements, enabling the production of complex medical instruments with exceptional accuracy.
Headline
Trend
Smart Manufacturing in Printing: A New Era of Efficiency, Precision, and Sustainability
For over a century, the printing industry has been regarded as a relatively mature and stable sector. However, as market demand diversifies and the wave of digitalization accelerates, printing is undergoing a profound transformation. In the era of Industry 4.0, intelligence and automation have become the keywords of competitiveness. From AI (Artificial Intelligence) to IoT (Internet of Things), and the rise of post-press automation, these technologies are quietly reshaping every step of the printing process. Printing is no longer just about reproducing text and images; it is evolving into an era of “smart manufacturing” that is more efficient, precise, and environmentally friendly.
Headline
Trend
Industrial Applications of CNC in the Robotic Arm Industry
CNC technology is an automated system that precisely controls machinery through computer programs, widely applied across various manufacturing sectors. The robotic arm industry encompasses both industrial uses (such as assembly and welding) and service applications (such as latte art or maintenance). In Japan, for instance, people with disabilities can remotely operate robots from home for work. This industry is visibly experiencing rapid growth. According to 2025 market data, the global robotics market is expected to reach USD 50.8 billion, with service robots accounting for USD 40.58 billion, demonstrating strong growth potential. The application of CNC in the robotic arm industry extends beyond component manufacturing to control systems and versatile task execution.
Headline
Trend
From Solar to Wind: The Heart of Green Energy
When discussing the energy transition, attention often falls on the surface area of solar panels, the blades of wind turbines, or the massive structures of nuclear power plants. Yet behind these world-changing energy systems, the critical components that drive solar, wind, and nuclear operations rely heavily on precision-manufactured CNC machines. Often hailed as the “brains of manufacturing,” these machines, with micron-level precision and highly automated capabilities, serve as the invisible engine powering technological breakthroughs and future innovations in the energy sector.
Headline
Trend
Seeing the Future in Wood: How CNC Technology is Transforming the Woodworking Industry
Traditional woodworking has long been synonymous with craftsmanship. In the past, the meticulous shaping of wood required artisans wielding hand planes, relying on time and experience to perfect every piece. Today, however, we live in an era of automation, and CNC (Computer Numerical Control) machinery has become the backbone of modern woodworking. Through precise computer control and high-speed processing, CNC enables wood cutting, carving, and complex shaping with exceptional accuracy and consistency. The woodworking industry is entering a new phase centered around digital control, ushering in higher quality and greater value-added production.
Agree