Future Development Trends of the Laser Processing Industry
Trend

Future Development Trends of the Laser Processing Industry

Lasers are used in a wide range of industries, especially in processing. The entire laser processing industry is currently moving in the direction of high power, ultra-short pulse, and intelligence.
Published: Dec 07, 2022
Future Development Trends of the Laser Processing Industry

Market Development of the Laser Processing Industry:

The laser industry is developing rapidly in the world, and now it has been widely used in laser intelligent manufacturing equipment, biomedical beauty, laser display, laser radar, high-speed optical communication, artificial intelligence, machine vision and sensing, 3D recognition, laser printing, scientific research, and other fields. Lasers are widely used in various industries, and some applications are gradually declining due to technological progress, such as the optical storage industry. However, most of the applications have been kept new for a long time, such as communication, medical beauty, national defense and military, instruments, etc., and even some new applications have been discovered with technological progress, such as for Light Detection and Ranging (LiDAR), Additive Manufacturing (AM), semiconductor Lithography equipment, etc. Especially in the application of processing, laser technology has unique characteristics, can be used for both additive and subtractive manufacturing, and is non-contact processing, so it occupies an important position in the manufacturing industry. Laser technology has unique characteristics, can be used for both additive and subtractive manufacturing, and is non-contact processing, so it occupies an important position in the manufacturing industry. The entire laser processing industry is moving in the direction of high power, ultra-short pulse, and intelligence.

With the development of global intelligence, the demand for lasers in smart devices, consumer electronics, new energy, and other fields continues to grow. As well as the continuous expansion of emerging applications such as medical and beauty equipment, the global market size of lasers will continue to maintain steady growth.

What is a Semiconductor Laser?

Semiconductor lasers, also known as laser diodes, are lasers that use semiconductor materials as working substances. Due to the difference in material structure, the specific process of different types of laser production is quite special. The commonly used working substances are GaAs, CdS, InP, ZnS, and so on. Semiconductor lasers have the best energy conversion efficiency among all types of lasers. On the one hand, they can be used as the core pump source of various optically pumped lasers such as fiber lasers and solid-state lasers. With the continuous breakthrough of semiconductor laser technology in power, efficiency, brightness, life, multi-wavelength, modulation rate, etc., semiconductor lasers are widely and directly used in material processing, medical treatment, optical communication, sensing, national defense, and other fields.

Optically exciting semiconductor laser technology uses high-power laser diodes as laser excitation light sources and then uses aluminum gallium indium arsenic semiconductor materials as gain media to generate lasers. This technology has been used in many applications since its development. It is emerging in the field, and it has changed the shortcoming of wavelength limitation in solid-state laser technology. In the optically excited semiconductor laser technology, the control and design of the semiconductor gain medium can generate near-infrared light wavelengths from 920nm to 1154nm, and then generate 355nm to 577nm by frequency doubling or triple frequency technology. Visible light wavelength. And these special wavelengths have been widely used in medical treatment, life science, and industry.

The Future Development Trend of Laser Processing:

Ultra-short pulse and high peak power are the future development trend of solid-state lasers, and are suitable for circuit board welding and cutting metal sheets. The higher the laser power, the faster the processing speed. Using diodes as excitation light sources can reduce the cost of ultrashort pulse lasers. In the macro processing part, the higher the power of the laser source, the higher the processing efficiency. In the micro processing part, the shorter the pulse, the smaller the heat zone on the workpiece, and the higher the machining accuracy. After sorting out the development trend of the global laser industry, it is concluded that the future development trend of laser processing will develop in the direction of a higher power, shorter pulse, and low price.

  • High-power laser:
    The efficiency of laser processing is closely related to the material of the workpiece itself, the wavelength of the laser light, the power of the laser light, and the pulse time. Improving the power of laser light has been the director of the industry's efforts, especially in macro processing, such as welding, cutting, cladding, etc., and laser power is also highly correlated with processing efficiency. Therefore, doubling the power can nearly double the efficiency and reduce the processing time by 50%, but the cost may only increase by 30%, which is attractive for the production line. The laser light power used in laser cutting has increased from 1KW to 8KW in the past few years, and some manufacturers have even exhibited 10KW, and the development of fiber laser sources for laser metal cutting to high power has become a trend. In the welding part, the 120KW laser is the product of the development trend of high-power lasers. The lasers used in national defense and military use can reach the level of 200KW, so the continuous development of higher power is the future trend of lasers.
    From the perspective of the development trend of the entire high-power laser industry, fiber laser combines the waveguide characteristics of optical fibers and the integrated characteristics of semiconductors and has outstanding advantages such as good beam quality, high efficiency, good heat dissipation, compact structure, and flexible operation. It represents the development direction of high-power and high-brightness lasers. Another high-power laser trend is the use of Direct Diode Laser (DDL). The output power of a single laser diode varies from milliwatts to several watts, and the power can be increased by combining individual lasers into bar laser diodes and stacks of bar laser diodes. A standard laser diode stripe is 1 cm wide. Technological advances have enabled DDLs to generate output powers over 20 kilowatts in multimode systems at about 25% less cost than fiber lasers of the same power.
  • Ultra-Short Pulse Laser (ULP):
    One of the characteristics of an ultrashort pulse (USP) laser is that the pulse width is very short, which is a short laser light. In the field of laser technology, pulsed lasers with a time width between picosecond (ps), that is, 10-10s (1 ps=10-12s) to several femtoseconds (fs) (1 fs=10-15s) are generally called super short pulse laser. Ultrashort pulse laser is a general term for picosecond laser and femtosecond laser. Since ultrashort pulse lasers are widely used to detect ultrafast dynamic processes in the fields of science and engineering technology. Such as the excitation of electronic states in atoms, the dynamic response of materials and electronic devices, and the transient recording of various explosion shock waves, etc. The ultrashort pulse laser Pulsed lasers are also often referred to as ultrafast lasers.
    The application of ultra-fast lasers in the industry is more inclined to precision machining. Since many precision components do not want thermal effects to affect product quality, ultra-short pulse laser processing can minimize thermal effects, so some industry players call it cold working. The components required by the electronic industry such as semiconductors and displays usually have high product quality requirements, but it is difficult to avoid thermal effects in other processing methods. Therefore, an ultrashort pulse laser is a good choice. The Industrial Internet of Things and electric cars require a large number of electronic components, including passive components, sensors, integrated circuits, power components, etc. Therefore, ultrashort pulse lasers are gradually gaining attention in the electronics industry and will be gradually adopted in the fields of automobiles, aerospace, biomedicine, and energy in the future, and the popularity of ultrashort pulse lasers will be just around the corner.

In addition to being used in lithography, lasers are suitable for processing semiconductor wafers. Whether it is cutting, marking, drilling, measuring, annealing, or removal processes, lasers are required to complete these semiconductor processes. Injection processing has relative advantages. In the future, with the trend of laser characteristics such as high power and ultra-short pulse, and the price of lasers will decline year by year, it will become popular, and many applications will continue to be discovered.

Published by Dec 07, 2022 Source :moea

Further reading

You might also be interested in ...

Headline
Trend
Innovation in the Medical Consumables Industry Amidst Global Trends
The global healthcare industry is currently undergoing a pivotal paradigm shift. Every macroeconomic trend—from demographic changes, the geopolitical reshaping of supply chains, and the convergence of biotechnology and digitalization, to the urgent demand for environmental sustainability—profoundly impacts the dynamics and trajectory of the medical device market. Against this backdrop, the medical consumables industry must not merely adapt; it must proactively lead innovation and become a key driver in building resilient healthcare defenses.
Headline
Trend
The Purifying Force Between Industries: The Evolution and Trends of Cutting Fluid Recycling Systems
Over the past decade, cutting fluid recycling and regeneration technologies have evolved from auxiliary support services into essential core equipment and processes within manufacturing. Recycling and reusing cutting fluids reduce raw material and water waste, making production processes more aligned with circular economy principles. According to market forecasts, the global cutting fluid market size will reach USD 3.78 billion in 2024 and is expected to grow to USD 5.64 billion by 2033, with a compound annual growth rate (CAGR) of approximately 4.3%. Among this, the market for regeneration equipment and treatment services is expanding particularly rapidly, reaching about USD 1.31 billion in 2024 and projected to double to USD 2.61 billion by 2033, with a CAGR as high as 7.8%.
Headline
Trend
Future Trends and Key Technological Breakthroughs in Plastic Recycling Equipment
As global environmental awareness continues to grow, the plastic recycling industry is presented with new development opportunities. However, the sector still faces multiple challenges, including improving recycling rates, efficiently sorting various types of plastics, and reducing operational costs.Plastic recycling involves sorting, cleaning, and processing waste plastics into reusable materials, helping reduce pollution and promote resource reuse.
Headline
Trend
The Shift to Onshoring: How Taiwan’s Supply Chain Strength Is Drawing Global Investment
Recently, increasing geopolitical tensions and global supply chain disruptions resulting from the pandemic have caused multinational corporations to rethink the structure of their supply chains. To mitigate risks and improve resilience, a growing number of manufacturers are shifting their operations from offshoring to onshoring and nearshoring. Thanks to its robust manufacturing ecosystem, strategic location, and technological expertise, Taiwan has emerged as a key destination for advanced manufacturing and high-value component production. Backed by a highly skilled workforce, resilient infrastructure, and advanced manufacturing capabilities, Taiwan is deeply integrated into global technology supply chains and offers stable, tech-driven production networks. These strengths position Taiwan as an ideal onshoring partner and are drawing renewed global investment.
Headline
Trend
Custom Mold and Die Services in Southeast Asia: Taiwan’s Competitive Edge
Custom tooling is the foundation of precision manufacturing, enabling the production of everything from smartphone casings and automotive parts to packaging components and medical devices. In this fast-growing market, Taiwan had remained a trusted leader, delivering advanced tooling solutions that meet the speed, complexity, and quality demands of modern industry.
Headline
Trend
Taiwan's E-Bike Export Surge: Key Markets and Trends Driving Growth
Taiwan's e-bike industry has experienced significant fluctuations in recent years. After reaching a peak in 2022, exports faced a downturn in 2024, with a 47% decline in e-bike exports compared to the previous year. Despite these challenges, the industry is showing signs of recovery and adaptation, positioning itself for future growth. Taiwan has rapidly emerged as a global leader in this booming sector. Once primarily recognized for traditional bicycle manufacturing, Taiwan has transformed into a high-tech hub for premium electric mobility solutions.
Headline
Trend
Taiwan's Strategic Role in Global Data Storage and Memory Supply Chains
With its robust semiconductor industry, advanced manufacturing capabilities, and strategic investments, Taiwan contributes significantly to the production and innovation of memory technologies essential for various applications, from consumer electronics to data centers.
Headline
Trend
Taiwan’s Medical Device Manufacturing: The Medical Devices Act and Its Global Significance
In recent years, Taiwan has emerged as a significant player in the global medical device industry—an ascent shaped not only by its advanced manufacturing capabilities but also by bold regulatory transformation. At the heart of this transformation is the Medical Devices Act, a landmark piece of legislation that redefined how medical technologies are developed, approved, and marketed within Taiwan. Driven by the need to align with international standards and respond to the growing complexity of modern medical technologies, the Act has introduced a risk-based regulatory framework, streamlined approval processes, and facilitated global market access. These reforms have strengthened Taiwan’s position as a competitive and trusted source of medical devices for global healthcare markets. Taiwan's medical device industry is now undergoing rapid growth, propelled by this regulatory clarity, continued investment in high-tech innovation, and rising global demand for safe, effective, and export-ready medical solutions. For manufacturers and investors looking to access the international medical device market, Taiwan offers a strategically evolving landscape that is both business-friendly and globally connected.
Headline
Trend
Taiwan’s Strategic Role in the Global Solar and Battery Market: Opportunities and Innovations
Taiwan’s solar generation reached 12.9 billion kWh in 2023, providing almost 48% of Taiwan’s total renewable energy generation. The focus of the government on energy security and sustainability aligns with the expansion of solar energy infrastructure. The growing electricity demand is pushing the need for additional solar photovoltaic (PV) installations, particularly in industrial and commercial sectors, which are significant consumers of electricity in Taiwan. Moreover, the energy requirements of the industrial sector are driving the adoption of large-scale solar PV projects. In parallel, Taiwan's battery market is expected to reach USD 0.77 billion by 2025 and grow at a CAGR of 14.3% to USD 1.49 billion by 2030. The government plans to accumulate 590 MW of battery-based energy storage by 2025, with significant contributions from both public and private sectors.
Headline
Trend
Powering the Future: New Energy Vehicles, Sustainable Manufacturing, and Challenges
In the quest for a sustainable and eco-friendly future, the automotive industry is witnessing a profound transformation with the emergence of New Energy Vehicles. New Energy Vehicles, commonly known as NEVs, encompass a wide range of vehicles powered by alternative energy sources or a combination of traditional and renewable energy technologies. The implementation of sustainable manufacturing practices and collaboration among stakeholders presents challenges for NEV development as well as great potential for market growth.
Headline
Trend
Charging Ahead: Recharging Infrastructure in the Electric Vehicle Industry
As the electric vehicle (EV) revolution gains momentum worldwide, one of the critical pillars supporting this transition is the development of a robust recharging infrastructure network. This network plays a pivotal role in the widespread adoption of electric vehicles, ensuring convenience, accessibility, and sustainability for EV owners. Factors contributing to the acceptance of EVs and their associated recharging infrastructure include environmental awareness, advancements in battery technology, vehicle design, the expanding range of available EV models, and the implementation of government incentives to promote these new technologies.
Headline
Trend
Beyond Driving: The Future Landscape of Smart Automobile Technology
As the smart automotive industry embraces the shift toward sustainability, innovation, and connectivity, the manufacturing of Electric Automobiles (EVs) and New Energy Vehicles (NEVs) is shaping the future of transportation. Let’s explore some of the dynamic technology and key factors driving their evolution.
Agree