The Development of Medical Technology
Trend

The Development of Medical Technology

With the advancement and development of medical technology (such as the use of new drugs, new surgical procedures, the use of new treatments, genetic screening, etc.), many severe or critical illnesses can be alleviated or cured, high-risk surgeries can be made less terrifyingly, and genetic diseases that were previously undetectable can be screened in advance and properly dealt with.
Published: Jan 17, 2022
The Development of Medical Technology

Progress in medical technological is not only applied to daily life and electronic products, but medical technology also provides new ways to fight disease and keep us healthy.

Trends in medical technology:
  1. Pain replacement therapy:

    Today, the opioid crisis has become a public health crisis. Chronic pain often necessitates the need for an opioid prescription, and although there are some clinically approved alternative treatments for chronic pain, none of these substitutions can fully achieve the benefits of opioids.
    Medical organizations are doing active research in the field of pharmacogenomics, and there is hope that by analyzing the genetic makeup of patients, doctors can predict the patient’s metabolism of individual drugs, including opioids. Pharmacogenomic testing can be used to avoid side effects, and help determine where unnecessary and ineffective prescription drugs can be eliminated and replaced with more effective drugs.

    Pharmacogenomics can also be used to predict the effects of opioid analgesics. If the patient's pain is not relieved, pharmacogenomics can give a timely update to the prescription of such patients, and provide a plan for customized drug therapy. With the proliferation of genetic trials, pharmacogenomics has the potential to bring about major advances in precision therapy and eradicate the opioid crisis.

  2. The development of medical artificial intelligence:

    The application of artificial intelligence in the medical field has moved from theory to practice. In the medical industry, the application of AI in decision support, image analysis, and patient triage is changing the development of the medical industry. Now, with the assistance of AI technology, doctors can make more accurate decisions in diagnosis and treatment, and can analyze patient scan results more conveniently and accurately.
    With the development of artificial intelligence technology, machine learning algorithms can be used in the medical field to point out the problematic parts of patient images, and quickly find out the reasons, or reference data from other past cases in the electronic medical record system. As AI is integrated into healthcare, healthcare services will be transformed and become smarter. Thanks to massive clinical data in the medical field and the support of artificial intelligence technology, medical artificial intelligence has developed rapidly. Progress has been made with many applications such as smart health management platforms, artificial intelligence, virtual assistants, medical image-assisted diagnosis, and drug research development. The development of medical artificial intelligence will greatly ease the shortage of medical resources, adjust the medical service model, reduce the burden on doctors, and improve service efficiency.
    The purpose of AI is not to replace doctors or make clinical decisions, but to enhance and improve the humanization of machines to better communicate with people. As AI combines with healthcare, healthcare services will transform to use a smarter approach.

  3. Extend the time window of acute stroke intervention:

    The timing of intervention in acute cerebral stroke is particularly important, as the rescue time is key to the survival of the patient. Ischemia following a stroke can cause irreversible damage to the patient, often resulting in disability. Extending the time window of stroke treatment can reduce the risk of disability for more stroke patients and provide opportunities for patients to recover.

  4. Advances in Cancer Immunotherapy:

    Cancer immunotherapy, also known as biological therapy, is a technique that uses the body's immune system to fight cancer. While immunotherapy for cancer has been around for some time, new immunotherapy targets continue to emerge due to the world's ongoing research dedicated to curing cancer.
    Tumor immunotherapy refers to the application of immunological principles and methods to specifically remove tumor residual lesions, inhibit tumor growth, and break immune tolerance by activating immune cells in the body and enhancing the body's anti-tumor immune response. Tumor immunotherapy is to overcome the mechanism of tumor immune escape, thereby reawakening immune cells to eliminate cancer cells. Due to its small side effects and obvious therapeutic effects, it is gradually becoming the development direction of future tumor treatment and is known as the fourth largest tumor treatment technology after surgery, radiotherapy, and chemotherapy.

  5. 3D technology - printing for the production of products for the special needs of patients:

    Today, 3D technology is also used in the medical field. Through 3D printing technology, joints can be used to create implants and can be printed even during surgery. 3D printed prosthetics are gaining popularity as digital printing capabilities allow the printing of fully customized prosthetic that match individual measurements down to the millimeter, providing unprecedented implant comfort and ease of movement. Using 3D printing technology, special materials are used to tailor the required prostheses, skulls, and orthopedic implants for patients. The medical aids produced in this way can be better accepted by the human body, reduce the occurrence of rejection reactions, and improve patient outcomes. It also reduces unnecessary waste. 
    Long-lasting and soluble items can be produced using a printer. For example, 3D printing can be used to print pills containing multiple drugs, which will help patients organize the timing and monitoring of multiple drugs.

  6. Virtual reality

    VR (Virtual Reality Technology) is a computer simulation system that can create, and give the experience of virtual worlds. It uses computers to generate an analog environment, allowing the experiencer to see dynamic three-dimensional stereoscopic images.

    Virtual reality has been around for a while. More recently, with advances in medicine and technology, medical students have been able to use the technology to attain a realistic medical experience. State-of-the-art VR equipment provides an intuitive understanding of how human anatomy is connected through rehearsal routines to help achieve the desired experience. VR equipment will also provide greater help to patients and has a very good application in inpatient rehabilitation.
  7. High-tech helmet - for out-of-hospital stroke patient diagnosis:

    A device called the Cerebrates Visor, a high-tech helmet developed by Medical Systems in the United States, detects strokes using a process called Volume Impedance Phase Shift Spectroscopy (VIPS). The device is placed on the patient's head and works by emitting low-energy radio waves that travel through the left and right hemispheres of the brain. As these radio waves pass through the fluid in the brain, their frequency changes. By assessing changes in these frequencies and comparing data from the left and right hemispheres of the brain, a significant difference indicates a stroke, and the greater the difference, the more severe the stroke.

  8. Robotic surgery innovation:

    In the United States, surgical robots have been used clinically for more than ten years, and they are still developing. Using robotic surgery can improve accuracy, reduce the incidence of infection, shorten hospital stays, and reduce surgical trauma.
    Robotic surgery is used in minimally invasive procedures to help improve precision, control, and flexibility. With the help of surgical robots, surgeons can perform very complex surgeries that would otherwise be very difficult or impossible to perform. As technology improves, it can be combined with augmented reality to allow surgeons to instantly view other vital patient information while operating. Robotic surgery helps to assist and enhance the work of the surgeon and the performance of the surgery.

  9. Percutaneous Mitral and Tricuspid Valve Replacement:

    The heart is one of the most important organs in the human body and cannot stop functioning. The heart must continue to maintain its heartbeat after a valve problem occurs, but the problems arising from the heart often become more and more serious. When it develops to an advanced stage, heart valve replacement surgery is required. However, at this time, the cardiopulmonary function of patients is often unable to tolerate cardiac surgery, and many patients have to work hard to maintain signs of life under the maintenance of drugs.
    It is generally believed that there are many causes of organic tricuspid regurgitation, such as rheumatic heart disease, congenital Ebstein malformation, valve damage caused by infective endocarditis, tricuspid valve prolapses, right ventricular myocardial infarction, chest trauma, etc.
    While cardiac surgery is now well established, cardiac specialists continue to research techniques to reduce trauma, such as placing stents in the heart through arteries. Recently, medical scientists have been also looking for better heart valve replacement technology. In 2016, percutaneous cardiac mitral and tricuspid valve replacements were successfully performed. This technique involves subcutaneously puncturing the blood vessel and delivering a catheter to the valve to surgically replace the lesion.

  10. Gene therapy:

    In recent years, more and more industries have invested in gene therapy research, and more and more gene therapy products have been launched and tried out. The academic side has also received more and more industry funding, further expanding the research and development of gene therapy drugs.

Taiwan is moving towards the era of precision medicine and precision health:

Taiwan's medical care has always been valued internationally. Before the epidemic, Taiwan had made breakthroughs in 5G technology, but after this epidemic, more and more people have paid attention to the development of the combination of medical care and technology. Committed to integrating the upstream and downstream of medical care, it combines the complete industrial chain of smart medical care, IT electronics, information, and communication industry, precision machinery, biotechnology pharmaceuticals, and innovative medical materials to promote innovation and development of Taiwan's medical technology.

Published by Jan 17, 2022 Source :precisionthera

Further reading

You might also be interested in ...

Headline
Trend
Innovation in the Medical Consumables Industry Amidst Global Trends
The global healthcare industry is currently undergoing a pivotal paradigm shift. Every macroeconomic trend—from demographic changes, the geopolitical reshaping of supply chains, and the convergence of biotechnology and digitalization, to the urgent demand for environmental sustainability—profoundly impacts the dynamics and trajectory of the medical device market. Against this backdrop, the medical consumables industry must not merely adapt; it must proactively lead innovation and become a key driver in building resilient healthcare defenses.
Headline
Trend
From Components to Systems: Unveiling the Core Drivers of Robotics Industry Trends
Artificial intelligence and automation technologies are advancing at a rapid pace, driving large‑scale deployments of robots across manufacturing, healthcare, logistics, and service sectors. This momentum is propelling overall industry upgrades and operational efficiency leaps. Amid this wave, mastering the manufacture of high‑precision, high‑reliability core components has become the decisive factor in market competitiveness.
Headline
Trend
The Purifying Force Between Industries: The Evolution and Trends of Cutting Fluid Recycling Systems
Over the past decade, cutting fluid recycling and regeneration technologies have evolved from auxiliary support services into essential core equipment and processes within manufacturing. Recycling and reusing cutting fluids reduce raw material and water waste, making production processes more aligned with circular economy principles. According to market forecasts, the global cutting fluid market size will reach USD 3.78 billion in 2024 and is expected to grow to USD 5.64 billion by 2033, with a compound annual growth rate (CAGR) of approximately 4.3%. Among this, the market for regeneration equipment and treatment services is expanding particularly rapidly, reaching about USD 1.31 billion in 2024 and projected to double to USD 2.61 billion by 2033, with a CAGR as high as 7.8%.
Headline
Trend
Future Trends and Key Technological Breakthroughs in Plastic Recycling Equipment
As global environmental awareness continues to grow, the plastic recycling industry is presented with new development opportunities. However, the sector still faces multiple challenges, including improving recycling rates, efficiently sorting various types of plastics, and reducing operational costs.Plastic recycling involves sorting, cleaning, and processing waste plastics into reusable materials, helping reduce pollution and promote resource reuse.
Headline
Trend
The Shift to Onshoring: How Taiwan’s Supply Chain Strength Is Drawing Global Investment
Recently, increasing geopolitical tensions and global supply chain disruptions resulting from the pandemic have caused multinational corporations to rethink the structure of their supply chains. To mitigate risks and improve resilience, a growing number of manufacturers are shifting their operations from offshoring to onshoring and nearshoring. Thanks to its robust manufacturing ecosystem, strategic location, and technological expertise, Taiwan has emerged as a key destination for advanced manufacturing and high-value component production. Backed by a highly skilled workforce, resilient infrastructure, and advanced manufacturing capabilities, Taiwan is deeply integrated into global technology supply chains and offers stable, tech-driven production networks. These strengths position Taiwan as an ideal onshoring partner and are drawing renewed global investment.
Headline
Trend
Custom Mold and Die Services in Southeast Asia: Taiwan’s Competitive Edge
Custom tooling is the foundation of precision manufacturing, enabling the production of everything from smartphone casings and automotive parts to packaging components and medical devices. In this fast-growing market, Taiwan had remained a trusted leader, delivering advanced tooling solutions that meet the speed, complexity, and quality demands of modern industry.
Headline
Trend
Taiwan's E-Bike Export Surge: Key Markets and Trends Driving Growth
Taiwan's e-bike industry has experienced significant fluctuations in recent years. After reaching a peak in 2022, exports faced a downturn in 2024, with a 47% decline in e-bike exports compared to the previous year. Despite these challenges, the industry is showing signs of recovery and adaptation, positioning itself for future growth. Taiwan has rapidly emerged as a global leader in this booming sector. Once primarily recognized for traditional bicycle manufacturing, Taiwan has transformed into a high-tech hub for premium electric mobility solutions.
Headline
Trend
Taiwan's Strategic Role in Global Data Storage and Memory Supply Chains
With its robust semiconductor industry, advanced manufacturing capabilities, and strategic investments, Taiwan contributes significantly to the production and innovation of memory technologies essential for various applications, from consumer electronics to data centers.
Headline
Trend
Taiwan’s Medical Device Manufacturing: The Medical Devices Act and Its Global Significance
In recent years, Taiwan has emerged as a significant player in the global medical device industry—an ascent shaped not only by its advanced manufacturing capabilities but also by bold regulatory transformation. At the heart of this transformation is the Medical Devices Act, a landmark piece of legislation that redefined how medical technologies are developed, approved, and marketed within Taiwan. Driven by the need to align with international standards and respond to the growing complexity of modern medical technologies, the Act has introduced a risk-based regulatory framework, streamlined approval processes, and facilitated global market access. These reforms have strengthened Taiwan’s position as a competitive and trusted source of medical devices for global healthcare markets. Taiwan's medical device industry is now undergoing rapid growth, propelled by this regulatory clarity, continued investment in high-tech innovation, and rising global demand for safe, effective, and export-ready medical solutions. For manufacturers and investors looking to access the international medical device market, Taiwan offers a strategically evolving landscape that is both business-friendly and globally connected.
Headline
Trend
Taiwan’s Strategic Role in the Global Solar and Battery Market: Opportunities and Innovations
Taiwan’s solar generation reached 12.9 billion kWh in 2023, providing almost 48% of Taiwan’s total renewable energy generation. The focus of the government on energy security and sustainability aligns with the expansion of solar energy infrastructure. The growing electricity demand is pushing the need for additional solar photovoltaic (PV) installations, particularly in industrial and commercial sectors, which are significant consumers of electricity in Taiwan. Moreover, the energy requirements of the industrial sector are driving the adoption of large-scale solar PV projects. In parallel, Taiwan's battery market is expected to reach USD 0.77 billion by 2025 and grow at a CAGR of 14.3% to USD 1.49 billion by 2030. The government plans to accumulate 590 MW of battery-based energy storage by 2025, with significant contributions from both public and private sectors.
Headline
Trend
Powering the Future: New Energy Vehicles, Sustainable Manufacturing, and Challenges
In the quest for a sustainable and eco-friendly future, the automotive industry is witnessing a profound transformation with the emergence of New Energy Vehicles. New Energy Vehicles, commonly known as NEVs, encompass a wide range of vehicles powered by alternative energy sources or a combination of traditional and renewable energy technologies. The implementation of sustainable manufacturing practices and collaboration among stakeholders presents challenges for NEV development as well as great potential for market growth.
Headline
Trend
Charging Ahead: Recharging Infrastructure in the Electric Vehicle Industry
As the electric vehicle (EV) revolution gains momentum worldwide, one of the critical pillars supporting this transition is the development of a robust recharging infrastructure network. This network plays a pivotal role in the widespread adoption of electric vehicles, ensuring convenience, accessibility, and sustainability for EV owners. Factors contributing to the acceptance of EVs and their associated recharging infrastructure include environmental awareness, advancements in battery technology, vehicle design, the expanding range of available EV models, and the implementation of government incentives to promote these new technologies.
Agree