How to Deal with the Recycling of Used Batteries from Electric Vehicles?
Trend

How to Deal with the Recycling of Used Batteries from Electric Vehicles?

The world is studying how to deal with the increasing number of discarded electric vehicle batteries.
Published: May 19, 2021
How to Deal with the Recycling of Used Batteries from Electric Vehicles?

The Goal of Carbon Neutrality

To achieve the goal of carbon neutrality, countries around the world are increasing the use of new energy electric vehicles, but this has also led to another issue. The handling of used batteries from electric vehicles has become an environmental and economic problem that needs to be solved.

The European Union hopes that by 2030 there will be 30 million electric vehicles on European roads. How to deal with used electric vehicle batteries will be a huge challenge. Take the Chinese market as an example. In 2020, a record 1.3 million electric vehicles were sold in the Chinese market, accounting for 40% of global electric vehicle sales.

With the market demand for electric vehicles growing rapidly, looking ahead 10-15 years, to when the service life of an electric vehicle’s battery expires, how will we deal with the problem of the used batteries management? While issues of carbon emissions are being addressed, the potential for ecological damage from used batteries also needs to be addressed urgently.

The difference between new and old vehicle batteries

Although most electric vehicle components are like traditional car components, the biggest difference is the battery.

The lead-acid batteries of traditional energy vehicles can be easily recycled, but the lithium-ion batteries used in new energy electric vehicles are inconvenient to do so. The battery of an electric vehicle is larger and heavier than that of an ordinary fossil fuel vehicle and consists of hundreds of individual lithium-ion batteries, all of which need to be dismantled for recycling. They contain dangerous substances, and if they are disassembled improperly, tend to explode.

Prospects for the Recycling Industry of Electric Vehicle Batteries

The European electric vehicle market has huge demand and is expected to develop a new recycling industry. At present, on a global scale, the recycling rate of lithium-ion batteries is still unclear, and many people think it is around 5%. In some parts of the world, it is still far below this number. The European Union recently put forward a proposal that will require electric vehicle suppliers to be responsible to ensure that their products will not be arbitrarily discarded after failure. Most manufacturers have responded.

Many different useful materials are recovered in the recycling process. As a first step, focus is placed on retrieving cathode metals such as cobalt, nickel, lithium, and manganese. Other recycling steps can are then taken to disassemble parts of the battery to retrieve aluminum and copper.

The pros and cons of recycling electric vehicle batteries

Efforts are being made to try to optimize the recycling and utilization of used electric vehicle batteries and make this process as streamlined as possible. In the future, there must be more efficient and cost-effective methods for electric vehicle battery recycling. Although the industry already has some division of labor and the ability to expand its scale, its efficiency is not high.

For example, most of the constituents of current batteries are reduced to so-called black substances (a mixture of lithium, manganese, cobalt, and nickel) during the recycling process. This requires further, energy-intensive processing to recover the relevant materials in a usable form. Manually disassembling electric vehicle batteries can effectively recycle more of these materials, but doing so can also cause problems.

In some countries such as China, health, safety, and environmental supervision regulations are more relaxed, allowing for working conditions that would not be accepted in the West. In addition, higher labor costs in European countries, such as the United Kingdom, make it difficult to implement cost effective recycling programs.

Rare metals and Chinese practices

Although improving the recyclability of electric vehicle batteries poses safety and labor cost challenges, from another perspective there are other economic considerations. Electric vehicle batteries have many elements that are difficult to obtain for industrial use in Europe and the United Kingdom.

In a 2021 report on Chinese government programs, one new project included was the construction of a recycling system for electric vehicle batteries. After the outbreak of the epidemic in 2020, the production of international cobalt mines declined sharply. Coupled with limited international logistics, cobalt prices rose significantly. With the rising costs of battery raw materials, the regeneration value of rare metals such as nickel, cobalt, and manganese in electric vehicle batteries has increased. As the world's largest electric vehicle market grows, Chinese industry scholars believe that this is an opportunity as well as a challenge. The Chinese industry analysts estimates that by 2030, the vehicle battery recycling market will exceed 100 billion yuan.

How China will handle pollution problems in the recycling of vehicle batteries is still being explored. In 2020, the total weight of batteries decommissioned in China was about 200,000 tons. Many of these flowed into unregulated black-markets and small workshops where potential pollution hazards, as well as threats to personnel safety existed. With the rapid increase in end-of-life electric vehicle batteries, this issue is arousing more and more urgent attention.

In Europe, one solution to this problem is automation and robotics, which can reduce the dangers encountered with electric vehicle battery recycling, and increase recycling’s economic benefits. 

With the rise in the number of electric vehicles and renewable energy storage systems being used, will there be enough raw materials to supply the batteries needed in the future? In a recent report by the East Asia Division of Greenpeace, it was pointed out that there would be enough retired lithium-ion batteries from electric vehicles to meet the global demand for materials needed for the production of energy storage systems by as soon as 2030.

The current battery industry is mainly centered in China, South Korea, and Japan, with 85% of production concentrated in these countries. Serious supply shortage risks for lithium and cobalt metals will impact battery manufacturing supply chains and affect local economies. To avoid possible supply shortages, more attention should be paid to battery recycling. Both the recovery of key raw materials from used batteries and the secondary production of batteries are important processes in the circular supply chain.

After 5-8 years of use, the electric vehicle batteries storage capacity will have decreased to about 80% and will eventually need to be replaced. It is estimated that worldwide, the amount of waste from electric vehicle batteries from 2021 to 2030 will reach 12.85 million tons. To meet the increasing demand for batteries, the demand for lithium metal in 2030 will be 29.7 times that of 2018. 30% of the world's total mined cobalt metal has been mined in just the past ten years. Up to 2021, a total of approximately 10.35 million tons of lithium, cobalt, nickel, and manganese have been mined worldwide.

China’s national policy points out that electric vehicles are an important part of emission reduction actions, but the high emissions of electric vehicle manufacturing must also be considered. Dealing with the recycling of waste batteries is just as important economically and environmentally as dealing with carbon dioxide.

Waste batteries can also be recycled for use in 5G equipment, data centers, and energy storage systems. This will decrease overall consumption and resource extraction, as well as reduce waste and carbon emissions. To make electric vehicles a sustainable solution, battery manufacturers and automobile companies will need bear the burden of a circular economy, and governments will need to support these types of socially responsible solutions.


Published by May 19, 2021 Source :bbc, Source :technews

Further reading

You might also be interested in ...

Headline
Trend
The Application of Materials Science in Medical Device Manufacturing
In the field of medical device manufacturing, materials science plays a central role, directly impacting the safety, durability, and clinical performance of equipment. With the rapid development of smart healthcare and precision medicine, the demands for material performance have become increasingly stringent, particularly in the areas of biocompatibility, antimicrobial properties, and lightweight design.
Headline
Trend
Globalization and Steel-and-Glass Structures: Has the Architectural Divide Between East and West Disappeared?
In the West, concrete is a symbol of strength and efficiency, yet in the hands of a Japanese master, it can become a vehicle for Zen philosophy. In Asia, bamboo is revered as a sustainable material, but in the West, it is being redeveloped into a high-tech, eco-friendly solution. This article will delve into why architects from the East and West, even when faced with the same materials, can create two completely different architectural identities. The root of this lies in a fundamental difference in philosophy: the Eastern focus on living in harmony with nature and the Western drive to challenge physical limits.
Headline
Trend
Sewing Challenges in the Era of Sustainability: Balancing Durability and Eco-Friendliness
In discussions on sustainable textiles, sewing threads may seem insignificant, yet they play a crucial role. The material and production process of threads not only affect the durability of garments but also have long-term environmental impacts. In particular, under the influence of “fast fashion,” low-quality threads often break or fade easily, leading to garments being quickly discarded. In contrast, durable threads made from sustainable sources help extend the life cycle of clothing, reduce waste, and embody the concept of “slow fashion.”
Headline
Trend
Smart Breathing Masks: From Pandemic Essential to Intelligent Healthcare
The evolution of healthcare is a continuous response to the needs of the times. Breathing masks, a medical consumable we once paid little attention to, are a concrete example of this transformative wave. They are shifting from being a cold, professional tool to a gentle companion infused with intelligence and human-centered care.
Headline
Trend
Addressing Packaging Challenges Across Industries: Key Strategies for Food, Chemical, and Pharmaceutical Sectors
Do different industries face the same challenges? While the products of the food, chemical, and pharmaceutical industries vary greatly, their packaging lines share a common set of core challenges: how to ensure quality and safety while balancing high efficiency and regulatory compliance. As a result, customized packaging solutions have become the mainstream. Packaging machines are no longer single-function devices for "capping and filling" but rather comprehensive systems designed to meet the specific regulations of each industry.
Headline
Trend
The AI Revolution in Healthcare: Redefining the Future of Medicine
The explosive rise of artificial intelligence (AI) is ushering in an unprecedented transformation within the healthcare industry. No longer just a data analysis tool, AI has evolved into a smart assistant capable of deep collaboration with human experts and even operating independently. From diagnostic assistance to personalized treatment plans, AI is making healthcare more efficient, precise, and accessible to every patient.
Headline
Trend
Waterless Printing & Smart Tech: The New Eco-Standard for Label Printing
As global expectations for environmental protection rise, both consumers and brands are placing greater emphasis on the environmental impact of a product’s entire lifecycle—from production to recycling. Labels and stickers, as common products in the printing industry, have traditionally relied on large amounts of water, solvents, and energy in their production processes, creating a significant environmental burden. Today, sustainable printing is no longer an optional add-on but a key strategy for building brand trust and enhancing market competitiveness. Brands with clear eco-friendly initiatives are more likely to gain favor from both policymakers and the market, positioning themselves at the forefront of the global sustainability trend.
Headline
Trend
Modern Scaffolding: A Guide to Revolutionizing Construction Safety & Efficiency
From the construction of the ancient pyramids of Egypt to the rise of modern skyscrapers, one crucial temporary structure has always played the role of an unsung hero: scaffolding. This support system not only provides a safe foothold for workers but has also continuously evolved from a simple framework into a highly efficient, precise, and intelligent engineering system.
Headline
Trend
The Connection Between Medical Device Manufacturing and Machine Tools
The medical industry is experiencing rapid growth, driven by an aging population, rising chronic diseases, and technological advancements. The demand for high-precision medical devices is increasing, requiring manufacturing processes that ensure safety, reliability, and performance. Machine tools play a critical role in meeting these stringent requirements, enabling the production of complex medical instruments with exceptional accuracy.
Headline
Trend
Smart Manufacturing in Printing: A New Era of Efficiency, Precision, and Sustainability
For over a century, the printing industry has been regarded as a relatively mature and stable sector. However, as market demand diversifies and the wave of digitalization accelerates, printing is undergoing a profound transformation. In the era of Industry 4.0, intelligence and automation have become the keywords of competitiveness. From AI (Artificial Intelligence) to IoT (Internet of Things), and the rise of post-press automation, these technologies are quietly reshaping every step of the printing process. Printing is no longer just about reproducing text and images; it is evolving into an era of “smart manufacturing” that is more efficient, precise, and environmentally friendly.
Headline
Trend
Industrial Applications of CNC in the Robotic Arm Industry
CNC technology is an automated system that precisely controls machinery through computer programs, widely applied across various manufacturing sectors. The robotic arm industry encompasses both industrial uses (such as assembly and welding) and service applications (such as latte art or maintenance). In Japan, for instance, people with disabilities can remotely operate robots from home for work. This industry is visibly experiencing rapid growth. According to 2025 market data, the global robotics market is expected to reach USD 50.8 billion, with service robots accounting for USD 40.58 billion, demonstrating strong growth potential. The application of CNC in the robotic arm industry extends beyond component manufacturing to control systems and versatile task execution.
Headline
Trend
From Solar to Wind: The Heart of Green Energy
When discussing the energy transition, attention often falls on the surface area of solar panels, the blades of wind turbines, or the massive structures of nuclear power plants. Yet behind these world-changing energy systems, the critical components that drive solar, wind, and nuclear operations rely heavily on precision-manufactured CNC machines. Often hailed as the “brains of manufacturing,” these machines, with micron-level precision and highly automated capabilities, serve as the invisible engine powering technological breakthroughs and future innovations in the energy sector.
Agree