What is ADAS, the Basis of a Fully Autonomous Driving System?
Knowledge

What is ADAS, the Basis of a Fully Autonomous Driving System?

Self-driving cars rely on technologies such as Advanced Driver Assistance Systems (ADAS) and the Internet of Vehicles.
Published: Apr 12, 2022
What is ADAS, the Basis of a Fully Autonomous Driving System?

Global Autonomous Driving Market:

The global autonomous driving market is developing rapidly, with an expected CAGR of 18.3% from 2020 to 2024. By 2024, shipments of L1-L5 autonomous vehicles are expected to reach about 54.25 million units. Market shares for L1 and L2 autonomous driving are expected to be 64.4% and 34.0%, respectively in 2024.

The self-driving car industry is mainly composed of traditional OEMs, component suppliers, technology companies, chip manufacturers, and transportation network companies (TNCs) to form an industrial chain.

Fundamentals of Self-Driving Systems:

To achieve automatic driving, it is necessary to first establish sound ADAS technology. Various micro-electromechanical systems need to work in cooperation to achieve self-driving. Tire pressure detection, pedestrian recognition, electronic braking, and even power distribution systems such as hill-climbing control make up for the driver's lack of driving skills. These technologies will eventually extend to performing actions such as lane-keeping, and Adaptive Cruise Control (ACC). The Internet of Vehicles is being developed to provide other forms of intelligent transportation.

What is An Advanced Driver Assistance System (ADAS)?

The system that assists the driver with in-car driving control is called ADAS. The main function is not to control the car, but to provide the driver with information such as the working conditions of the vehicle and changes in the driving environment outside the car. In some cases, it can assist in controlling the car, but the driver is still the protagonist in controlling the car. The auxiliary system only provides warnings and prompts, as an aid to assist the driver, allowing the driver to take early measures to avoid traffic accidents. This is equivalent to Society of Automotive Engineers (SAE) Level 2.

The key to enabling Advanced Driver Assistance System (ADAS) functionality is the collaboration of cameras, radar, lidar, and multiple ultrasonic sensor systems to identify objects, pedestrians, and potential hazards to the driver. In some cases, these technologies can work independently to ensure the safety of drivers, passengers, and pedestrians.

What Does an Advanced Driver Assistance System (ADAS) Include?

  • Sensors: Detects various external signals. The sensors that may be used include Radar, Lidar, ToF (3D time of flight), Infrared, Ultrasonic, etc., to detect distances and other conditions.
  • Processor: The Electronic Control Unit (ECU) in the car is responsible for processing incoming signals. It can collect and analyze the signals sent by all the sensors in the car, make appropriate classification and processing, and then output control signals to the actuators. Processors that can be used include Microprocessor and Memory Protection Unit (MPU), Digital Signal Processor (DSP), and Graphics Processing Unit (GPU).
  •  Actuator: Controls various actuated devices according to the signal sent by the processor, letting the related devices complete the controlled operation.

What are the Types of Advanced Driver Assistance Systems (ADAS)?

With the advancement of technology and the mass production of sensors, various Advanced Driver Assistance Systems (ADAS) are being more widely used in vehicles.

  • Parking Aid System (PAS):
    To assist the driver in parking, the active parking assist system can automatically control the steering wheel to assist the driver in completing the parking action. A passive parking assist system uses reverse imaging and ultrasound sensors to send images and sounds to the driver to assist the driver as he performs the parking action.
  • Night Vision System (NVS):
    At night or on rainy days with poor visibility, traffic accidents are likely to occur. High-sensitivity image sensors can be used, coupled with infrared image sensors to provide auxiliary images of pedestrians, animals, vehicles, and the environment in front of the vehicle for the driver.
  • Lane Departure Warning System (LDWS):
    Drivers are often distracted by dozing off, talking on the phone, etc., causing the vehicle to deviate from the lane. An image sensor in the rearview mirror or on the side of the car body, or a rear image sensor, monitors the lane lines and judges whether the wheel is pressed against the lane line. If the wheel is pressed against the lane line, but the turn signal is not activated, the system will generate a warning sound to remind the driver.
  • Collision avoidance system:
    Also known as Pre-crash system, Forward collision warning system, or Collision mitigating system. A radar sensor installed in front of the vehicle can continuously scan the road conditions ahead, and then judge the possibility of collision according to the driving conditions of the vehicle.
    When the distance to the vehicle in front becomes too short, the first phase of the warning system will activate a sound warning and display a message on a screen to remind the driver to pay attention to the distance between the vehicles. If the driver does not respond, the second-stage automatic light brake is activated, and the seat belt is gently pulled to warn the driver. If the driver does not respond, the system activates automatic emergency braking, and activates the retractable seat belt function to secure the driver and reduce accidental injuries.
  • Blind Spot Detection System (BSD):
     Car driving has so-called blind spots in the field of vision which can lead to danger due to failure of the driver to pay attention or respond in time. Blind spots are areas in the field of view where the driver cannot see directly or with the rear-view mirrors. They especially refer to the two sides of the vehicle body from the middle of the vehicle body to the rear. Infrared or radar sensors can be used to detect blind spots around the vehicle. When a pedestrian or vehicle is approaching, a warning sound is generated to remind the driver.
  • Adaptive Cruise Control System (ACC):
    A radar sensor installed in front of the vehicle continuously scans the road ahead, and the system is usually combined with a speed control device. The driver sets a speed and when the distance to the car in front becomes too short, the system will automatically slow the car down to maintain a safe distance from the car in front. It will automatically accelerate when the distance from the vehicle in front becomes larger, but will not exceed the speed set by the driver.
  • Adaptive Front Lighting System:
    The lights can be adjusted according to different vehicle speeds, roads, environments, and climate conditions to achieve the best lighting angle and range.
  • Tire Pressure Monitoring System (TPMS):
    A very small pressure sensor made of a micro-electromechanical system (MEMS) is installed on the tire inflation tube to monitor the tire pressure and temperature and communicate this information to the vehicle via wireless transmission. When the tire pressure is too high or too low, the system will display a warning message on the screen to remind the driver.
  • Breaking Electrical Assist System:
    The brake is one of the most important electronic components of the car, and electronic brake assist systems were some of the first driver assistance systems to be installed on cars.
  1. Anti-lock Brake System (ABS): Generally, the wheels will have a tendency to lock when the vehicle brakes are applied strongly in an emergency, causing the driver to lose control of the forward direction of the vehicle. With an ABS, when the driver depresses the brake pedal, the ABS will release the brakes 6 to 12 times per second. This will reduce the speed of the vehicle, but at the same time allow the driver to maintain control of the vehicle during deceleration.
  2. Brake Assist System (BAS): Often a driver may not be able to apply enough force to the brakes in an emergency. With a BAS, if the system detects the driver suddenly depressing the brake pedal with extreme speed and force, the system will determine that emergency braking is required, and pressurize the braking system to generate increased braking force.
  3. Traction Control System (TCS): A vehicle is prone to slippage when driving on rainy days, or through snow and mud. With a TCS, if one of the driving wheels is slipping, the system will reduce the power of the slipping wheel, or even lock the slipping wheel with the brake, so that more power is transmitted to the non-slipping wheel. This will ensure maximum forward power by balancing the driving force on both wheels.
  4. Electronic Brake-force Distribution (EBD): The traditional braking system distributes the braking force to the front and rear wheels of the car according to a fixed ratio. EBD can independently distribute the braking force of the four wheels according to different driving conditions to achieve the best deceleration effect and avoid wheel slip and unnecessary ABS action.
  5. Electronic Stability Control (ESC): This system automatically detects wheel speed, steering wheel rotation angle, body yaw amplitude, lateral acceleration, and other values to determine whether the vehicle is out of control. The system can provide a single-wheel brake to restore the stability of the vehicle.
  6. Brake Override System (BOS): The Electronic Control Unit (ECU) collects and analyzes the signals from all the sensors in the car. If there are any conflicting signals from the sensors, the system will give priority to braking to ensure the vehicle slows down while braking.
  7. Electric Parking Brake (EPB): With an EPB, a simple push of a button replaces the pulling of the parking brake handle. The electronic control unit (ECU) can automatically activate and cancel the parking brake when the car is started and accelerated. It can also be used to avoid the problem of vehicles reversing when starting uphill, thus increasing safety.
Published by Apr 12, 2022 Source :stockfeel

Further reading

You might also be interested in ...

Headline
Knowledge
Medical Consumables: Global Guardians of Health
Medical consumables are a wide range of products used by healthcare professionals on a daily basis, typically for a single use before being disposed of. Their primary purpose is to ensure patient care, maintain hygiene, and prevent the spread of infection. These items are crucial for everything from routine checkups to complex surgical procedures.
Headline
Knowledge
Closed Suction System: Revolutionizing Respiratory Care
In critical care, airway management is a vital part of sustaining a patient's life. When patients rely on ventilators, clearing respiratory secretions becomes a crucial aspect of daily care. This seemingly simple, yet critically important, procedure has undergone significant evolution over the past few decades, progressing from early open suctioning to today's more advanced and safer Closed Suction System (CSS).
Headline
Knowledge
Understanding Plastic Materials: A Professional Analysis and Application Guide
Plastic materials, due to their diverse properties and wide range of applications, have become indispensable in modern industries and daily life. Choosing the right plastic material for different needs is crucial for optimizing product performance and achieving environmental benefits. The following is a professional review of the characteristics, applications, and pros and cons of the main plastic materials.
Headline
Knowledge
Exploring Rubber Processing Technology: Core and Challenges of Modern Manufacturing
Rubber processing is one of the most critical stages in modern manufacturing. From vehicle tires to industrial equipment seals and various consumer goods, rubber materials are everywhere. As the demand for high-quality and efficient products rises, rubber processing technologies continue to evolve. This article explores the basic knowledge of rubber processing, key technologies, and future trends.
Headline
Knowledge
Understanding the Coffee Robot: A Comprehensive Analysis
This article provides a comprehensive overview of coffee robots—automated machines that brew and serve coffee using advanced robotics and artificial intelligence. It outlines their key features, including AI-driven customization, app connectivity, 24/7 efficiency, and diverse drink options. The report also examines their growing impact on the coffee industry, highlighting benefits for both consumers and businesses such as convenience, consistency, and reduced labor costs. Case studies like CafeXbot, Artly Coffee, and Rozum Café illustrate how coffee robots are reshaping the coffee experience and driving market growth worldwide.
Headline
Knowledge
Understanding PU Foam: Properties, Types, and Industrial Uses
PU foam is no longer merely a cushioning material. It has become a core functional component across sports, medical, fashion, and lifestyle industries. By adjusting density, thickness, and surface feel, PU can meet diverse requirements for breathability, antimicrobial performance, durability, and comfort. It also aligns with brand trends toward eco-friendly formulations and recyclable material solutions.
Headline
Knowledge
Understanding Helical Filters: A Comprehensive Overview
Helical filters are essential components in radio frequency (RF) and microwave engineering, playing a key role in signal filtering and processing. Known for their compact size, high Q-factor, and broad frequency range, these filters are widely used across various industries. This report provides an in-depth look at helical filters, including their structure, operating principles, advantages, limitations, and typical applications.
Headline
Knowledge
Boost Your Device’s Performance: A Guide to Choosing the Right Power Supply
Choosing the right power supply unit (PSU) is crucial for maximizing your device's performance, ensuring stability, and prolonging the lifespan of your components. A PSU is not just a simple component that provides power; it is the heart of your system that ensures each component receives the right amount of power safely and efficiently. This report will guide you through the essential considerations and steps to select the ideal PSU for your needs.
Headline
Knowledge
How to Choose the Ideal Wood Screws for Furniture and Cabinetry
Selecting the right wood screws is essential to building strong, stable, and visually appealing furniture or cabinets. Key factors include screw size, length, thread type, head style, and compatibility with different wood materials. Coarse threads suit softwoods, while fine threads are better for hardwoods. Choosing the proper head type ensures both function and aesthetics, while accounting for environmental changes helps maintain joint integrity. Pre-drilling pilot holes can also prevent splitting, especially in dense wood. By understanding these considerations, woodworkers can achieve durable, high-quality results in their projects.
Headline
Knowledge
How Effective Coolant Management Promotes Sustainable CNC Machining
Sustainable CNC machining increasingly relies on effective coolant management to reduce environmental impact, cut costs, and improve machining performance. Coolants are essential for lubrication, heat control, and chip removal, but improper handling leads to waste and higher expenses. Proper management practices—such as regular monitoring, filtration, recycling, automation, and using eco-friendly coolants—help extend coolant life, maintain machine health, and ensure consistent product quality. Although initial investment may be a barrier, the long-term benefits include cost savings, reduced waste, and enhanced operational efficiency. Future advancements in IoT and AI are expected to further optimize coolant systems, reinforcing sustainability in CNC machining.
Headline
Knowledge
A Complete Guide to Selecting the Ideal Paper Cups for Hot Beverages
This guide provides a detailed overview of how to choose the best paper cups for hot beverages. It explores the different types of cups—single-wall, double-wall, insulated, and eco-friendly—and explains their unique features and ideal use cases. Key factors to consider include beverage temperature, insulation needs, cup size and lid compatibility, environmental impact, and safety standards. The article also outlines best practices for both consumers and businesses to ensure safe use and responsible disposal. Ultimately, selecting the right paper cup depends on balancing functionality, comfort, sustainability, and cost.
Headline
Knowledge
Understanding the Difference Between Reverse Osmosis and Traditional Water Filters
An in-depth comparison between reverse osmosis (RO) and traditional water filters, two widely used methods for purifying drinking water. It outlines how RO uses a semi-permeable membrane to remove dissolved salts, heavy metals, and microorganisms, making it ideal for areas with highly contaminated water. In contrast, traditional filters rely on physical and chemical filtration - often using activated carbon - to improve taste and remove larger particles. While RO systems offer superior contaminant removal, they come with higher costs and water usage. Traditional filters are more affordable and environmentally friendly but less effective against microscopic impurities. The article concludes that the best choice depends on specific water quality needs, and in some cases, combining both systems can offer the most comprehensive solution.
Agree