The Role of Fog Computing in Enhancing the Industrial Internet of Things
Trend

The Role of Fog Computing in Enhancing the Industrial Internet of Things

After "Cloud Computing", a new term "Fog Computing" has been added in recent years. It mainly comes from the phrase "fog is a cloud closer to the ground".
Published: Jun 09, 2023
The Role of Fog Computing in Enhancing the Industrial Internet of Things

What Is Fog Computing?

For the development of IoT technology and applications, more and more intelligent networking devices are connected to the network. Under the basic model of cloud computing, most of them have only very weak computing power. Therefore, related computing resources, such as storage or computing power, must be accessed from the cloud through the network. With the rapid growth of demand, the burden on the cloud is getting heavier and heavier. After all, it is a centralized resource. Secondly, the cloud is relatively far from the end, and these smart devices have a long delay when accessing resources on the cloud.

Fog computing is designed for data-intensive, high-performance computing, and high-risk environments. Fog is an emerging distributed architecture that bridges the cloud and the devices connected to it, without the need to establish a permanent cloud connection between the site and the factory. By selectively transferring computing, storage, communication, and control, fog computing can make decisions close to IoT sensors and actuators (this is data generation and use). It is a useful supplement to cloud computing, not a complete replacement so that IIoT can be used efficiently, economically, safely, and constructively in a manufacturing environment.

Fog is sometimes called edge computing, but there are key differences between them. Fog is a superset of edge functions. The fog architecture combines resources and data sources with a hierarchical structure that resides on north-south edge devices (cloud to sensors) and east-west edge devices (function-to-function or point-to-point) for maximum efficiency. Edge computing is often limited to a small number of north and south layers, usually related to simple protocol gateway functions.

Therefore, under these considerations, there is fog-end computing, which means that computing resources are decentralized to some extent and deployed closer to users.
Therefore, fog computing is not a substitute for cloud computing, but as an extension of cloud computing.

Basically, the combination of the two is to hierarchize the allocation of computing resources. The top layer is the cloud, the middle layer is the fog, and the bottom layer is the client-side connected device. Therefore, under this model, a certain percentage of computing resources that were originally concentrated in the cloud will be reduced to the fog end. When the device wants to access resources, it will be accessed as close as possible to the fog end.

In this way, because the fog end is closer to the ground, the access speed is faster. Secondly, even if frequent and large amounts of communication are required, a large amount of network traffic will only be scattered between the ground and the fog, and will not communicate. Throwing into the cloud reduces the burden on the cloud.

How to Help the Industrial Internet of Things?

Factories can make full use of the data flow of the fog node layer to make the connection between factories better. Fog nodes located at a lower level in the overall structure, such as a single computer, can be directly connected to local sensors and actuators, so as to be able to analyze data in time and explain abnormal operating conditions. If it has been authorized, it can also respond and compensate for problems or solve problems autonomously. In addition, fog nodes can also send appropriate service requests for higher-level fog hierarchies to providers with better technical resources, machine learning capabilities, or maintenance services.

If the operating conditions require real-time decision-making, such as shutting down the equipment before it is damaged or adjusting key process parameters, the fog node can provide millisecond delay analysis and operation. Manufacturers do not have to use cloud data center routing to implement this real-time decision. This helps avoid potential delay issues, queue delays, or network/server downtime, and these delays can cause industrial accidents, reduce production efficiency, or product quality.

In the factory, the fog nodes located at a higher level can obtain a broader perspective on industrial processes. They can add more functions, such as the visualization of production line operations, monitoring the status of malfunctioning machines, adjusting production parameters, modifying production plans, ordering supplies, and sending alerts to the right people.

Fog computing can help IIoT and smart factories bring various benefits, including productivity, product quality, and safety. IIoT can provide a technical route for clean and green manufacturing. As a result, the manufacturing industry will achieve unprecedented customer-level collaboration and achieve mass customization and large-scale personalized customization. The potential opportunities to take full advantage of all aspects of the Smart Factory are endless.

Published by Jun 09, 2023 Source :kknews Source :medium Source :ithome

Further reading

You might also be interested in ...

Headline
Trend
Innovation in the Medical Consumables Industry Amidst Global Trends
The global healthcare industry is currently undergoing a pivotal paradigm shift. Every macroeconomic trend—from demographic changes, the geopolitical reshaping of supply chains, and the convergence of biotechnology and digitalization, to the urgent demand for environmental sustainability—profoundly impacts the dynamics and trajectory of the medical device market. Against this backdrop, the medical consumables industry must not merely adapt; it must proactively lead innovation and become a key driver in building resilient healthcare defenses.
Headline
Trend
From Components to Systems: Unveiling the Core Drivers of Robotics Industry Trends
Artificial intelligence and automation technologies are advancing at a rapid pace, driving large‑scale deployments of robots across manufacturing, healthcare, logistics, and service sectors. This momentum is propelling overall industry upgrades and operational efficiency leaps. Amid this wave, mastering the manufacture of high‑precision, high‑reliability core components has become the decisive factor in market competitiveness.
Headline
Trend
The Purifying Force Between Industries: The Evolution and Trends of Cutting Fluid Recycling Systems
Over the past decade, cutting fluid recycling and regeneration technologies have evolved from auxiliary support services into essential core equipment and processes within manufacturing. Recycling and reusing cutting fluids reduce raw material and water waste, making production processes more aligned with circular economy principles. According to market forecasts, the global cutting fluid market size will reach USD 3.78 billion in 2024 and is expected to grow to USD 5.64 billion by 2033, with a compound annual growth rate (CAGR) of approximately 4.3%. Among this, the market for regeneration equipment and treatment services is expanding particularly rapidly, reaching about USD 1.31 billion in 2024 and projected to double to USD 2.61 billion by 2033, with a CAGR as high as 7.8%.
Headline
Trend
Future Trends and Key Technological Breakthroughs in Plastic Recycling Equipment
As global environmental awareness continues to grow, the plastic recycling industry is presented with new development opportunities. However, the sector still faces multiple challenges, including improving recycling rates, efficiently sorting various types of plastics, and reducing operational costs.Plastic recycling involves sorting, cleaning, and processing waste plastics into reusable materials, helping reduce pollution and promote resource reuse.
Headline
Trend
The Shift to Onshoring: How Taiwan’s Supply Chain Strength Is Drawing Global Investment
Recently, increasing geopolitical tensions and global supply chain disruptions resulting from the pandemic have caused multinational corporations to rethink the structure of their supply chains. To mitigate risks and improve resilience, a growing number of manufacturers are shifting their operations from offshoring to onshoring and nearshoring. Thanks to its robust manufacturing ecosystem, strategic location, and technological expertise, Taiwan has emerged as a key destination for advanced manufacturing and high-value component production. Backed by a highly skilled workforce, resilient infrastructure, and advanced manufacturing capabilities, Taiwan is deeply integrated into global technology supply chains and offers stable, tech-driven production networks. These strengths position Taiwan as an ideal onshoring partner and are drawing renewed global investment.
Headline
Trend
Custom Mold and Die Services in Southeast Asia: Taiwan’s Competitive Edge
Custom tooling is the foundation of precision manufacturing, enabling the production of everything from smartphone casings and automotive parts to packaging components and medical devices. In this fast-growing market, Taiwan had remained a trusted leader, delivering advanced tooling solutions that meet the speed, complexity, and quality demands of modern industry.
Headline
Trend
Taiwan's E-Bike Export Surge: Key Markets and Trends Driving Growth
Taiwan's e-bike industry has experienced significant fluctuations in recent years. After reaching a peak in 2022, exports faced a downturn in 2024, with a 47% decline in e-bike exports compared to the previous year. Despite these challenges, the industry is showing signs of recovery and adaptation, positioning itself for future growth. Taiwan has rapidly emerged as a global leader in this booming sector. Once primarily recognized for traditional bicycle manufacturing, Taiwan has transformed into a high-tech hub for premium electric mobility solutions.
Headline
Trend
Taiwan's Strategic Role in Global Data Storage and Memory Supply Chains
With its robust semiconductor industry, advanced manufacturing capabilities, and strategic investments, Taiwan contributes significantly to the production and innovation of memory technologies essential for various applications, from consumer electronics to data centers.
Headline
Trend
Taiwan’s Medical Device Manufacturing: The Medical Devices Act and Its Global Significance
In recent years, Taiwan has emerged as a significant player in the global medical device industry—an ascent shaped not only by its advanced manufacturing capabilities but also by bold regulatory transformation. At the heart of this transformation is the Medical Devices Act, a landmark piece of legislation that redefined how medical technologies are developed, approved, and marketed within Taiwan. Driven by the need to align with international standards and respond to the growing complexity of modern medical technologies, the Act has introduced a risk-based regulatory framework, streamlined approval processes, and facilitated global market access. These reforms have strengthened Taiwan’s position as a competitive and trusted source of medical devices for global healthcare markets. Taiwan's medical device industry is now undergoing rapid growth, propelled by this regulatory clarity, continued investment in high-tech innovation, and rising global demand for safe, effective, and export-ready medical solutions. For manufacturers and investors looking to access the international medical device market, Taiwan offers a strategically evolving landscape that is both business-friendly and globally connected.
Headline
Trend
Taiwan’s Strategic Role in the Global Solar and Battery Market: Opportunities and Innovations
Taiwan’s solar generation reached 12.9 billion kWh in 2023, providing almost 48% of Taiwan’s total renewable energy generation. The focus of the government on energy security and sustainability aligns with the expansion of solar energy infrastructure. The growing electricity demand is pushing the need for additional solar photovoltaic (PV) installations, particularly in industrial and commercial sectors, which are significant consumers of electricity in Taiwan. Moreover, the energy requirements of the industrial sector are driving the adoption of large-scale solar PV projects. In parallel, Taiwan's battery market is expected to reach USD 0.77 billion by 2025 and grow at a CAGR of 14.3% to USD 1.49 billion by 2030. The government plans to accumulate 590 MW of battery-based energy storage by 2025, with significant contributions from both public and private sectors.
Headline
Trend
Powering the Future: New Energy Vehicles, Sustainable Manufacturing, and Challenges
In the quest for a sustainable and eco-friendly future, the automotive industry is witnessing a profound transformation with the emergence of New Energy Vehicles. New Energy Vehicles, commonly known as NEVs, encompass a wide range of vehicles powered by alternative energy sources or a combination of traditional and renewable energy technologies. The implementation of sustainable manufacturing practices and collaboration among stakeholders presents challenges for NEV development as well as great potential for market growth.
Headline
Trend
Charging Ahead: Recharging Infrastructure in the Electric Vehicle Industry
As the electric vehicle (EV) revolution gains momentum worldwide, one of the critical pillars supporting this transition is the development of a robust recharging infrastructure network. This network plays a pivotal role in the widespread adoption of electric vehicles, ensuring convenience, accessibility, and sustainability for EV owners. Factors contributing to the acceptance of EVs and their associated recharging infrastructure include environmental awareness, advancements in battery technology, vehicle design, the expanding range of available EV models, and the implementation of government incentives to promote these new technologies.
Agree