What is Smart Manufacturing?
Trend

What is Smart Manufacturing?

Wisdom Manufacturing (WM) is the use of advanced manufacturing technology and new-generation information technologies such as the Internet of Things, big data, cloud computing, artificial intelligence (AI), etc., to highly customize every link of the production process and use advanced manufacturing models to adapt to rapidly changing external market demands.
Published: Feb 08, 2022
What is Smart Manufacturing?

In 2021, the size of the global smart manufacturing market reached US$305 billion, and is expected to reach US$450 billion by 2025. With a compound annual growth rate of 10.5%, smart manufacturing will usher in the growing trend of the manufacturing market.

Previous manufacturing models usually pursued automation to mass-produce products. But now, more and more manufacturers are turning to smart manufacturing to achieve rapid customized production of products to meet customer needs. The benefits of smart manufacturing have been realized through conservative strategies such as strengthening manufacturing resilience, to gradually improving production capacity and efficiency, energy conservation, emission reduction, and recycling. All these have become important keys to boosting the growth of the smart manufacturing market.

Smart manufacturing gap analysis: Separation of data and business scenarios

With the blessing of digitalization, the manufacturing industry is being continuously strengthened. The industry is seeing the intelligent transformation of production methods, organization, supply chains, and manufacturing modes driven by new forms of marketing, services, and design.

The overall business strength of the company has improved, but there is still a gap in traditional fields such as device automation and intelligence. On the one hand, the lack of corresponding technical and production processes, coupled with the lack of motivation for automation upgrades due to cost issues, has resulted in low penetration and utilization rates of smart factories and smart workshops. On the other hand, the level of data flow is not enough to support the automatic execution between multiple business systems, which reduces the fluency of the business chain and the automatic collaboration between systems is not high.

The core of smart manufacturing: Generating value through data flow

Smart factories are the key to future development in industry, and the speed of device interconnection will be further accelerated. The standardization of production is guaranteed through data monitoring so that in the face of emergencies, production can respond immediately and data can act as a conductor to reduce risks.

In the manufacturing sector, data is an important resource. The manufacturing industry has an extensive accumulation of data which the Industrial Internet of Things (IIoT) can use to create major advantages. Whether it is the IIoT or smart manufacturing, all industrial elements, the entire industrial chain, and the entire value chain, including people, materials, and machinery are deeply interconnected.

Smart factory: Data culture should play an important role

An enterprise's digital development strategy, overall framework, cultural accumulation, management model, and key processes are mutually enhancing. To gain value from the information center, new technologies need to be developed and integrated.

Important elements of smart manufacturing:

Manufacturers that can master smart manufacturing will become the leaders of Industry 4.0. The following elements will help to build a good foundation and speed up the implementation of smart manufacturing.

  1. Element 1: Import automation equipment
    Although automation equipment is one of the foundations of smart manufacturing and can replace some labor-based jobs, it is important to match and optimize each link of design, production, and service to have high-efficiency and low-cost processes. If automation equipment is randomly introduced it may just be a waste of investment and have little benefit.
  2. Element 2: Device connection and data integration
    After automation equipment has been obtained, the next step is to connect the equipment. The data of each piece of equipment can be integrated with the technology of the Internet of Things, and the manufacturing process can be optimized.
  3. Element 3: Remote Monitoring
    Smart manufacturing has replaced some physical work, allowing people to carry out more decision-making and technical work. Through remote monitoring, operators can monitor the status of equipment at any time, adjust manufacturing schedules in real-time, and detect equipment malfunctions to increase productivity and extend equipment life.
  4. Element 4: Combining AI technology
    The ultimate goal of smart manufacturing it to combine artificial intelligence with manufacturing, and is an important trend at present. AI allows equipment to be upgraded, and through self-learning, information is collected which can be used to continuously optimize production processes.
Challenges currently faced by manufacturers:

With the digital transformation brought by Industry 4.0, not only the manufacturing industry, but the government as well, hopes to increase intelligent industry. Many manufacturing industries only saw Industry 4.0 as a means to an automated, unmanned factory, however this led to a lot of money being invested, without gaining the full potential of smart manufacturing.

Several difficulties are generally encountered during transformation. For example, the integration of automated equipment in production lines requires planning and design to create a complete system that will generate maximum benefits. Although today's technology has gradually matured, enterprises often cannot afford the cost of high-tech applications that would bring the economic benefits that result from implementing smart manufacturing. During the transformation, there will be a period of time required for manpower and system integration and adjustment. In addition to transferring data, recruitment of talents or internal training is also required. This should be taken into consideration to speed up the adaptation time.

Many enterprises will be eager to carry out industrial transformation. Before the transformation, they should first evaluate the situation within the enterprise, plan for possible problems, and have a complete integration plan to make for a smooth transformation.

Application of smart manufacturing:
  1. Expand 5G applications:
    The three major features of 5G (URLLC, mMTC, eMBB) are expected to provide secure, fast, and highly reliable communications, driving the transformation and upgrading of the manufacturing industry to smart factories. It is also necessary to develop the surrounding supply chain and ecosystem together with telecom operators, system integrators, and Netcom operators. In the future 5G+AI innovation will be able to handle one million edge devices within one square kilometer with optimal performance.
  2. Import AI interpretability:
    Humans and machines must cooperate, and interpretability must be used to guide people to make corresponding decisions.
  3. Federated Learning Model:
    Takes into consideration that when training AI models, traditional centralized learning cannot be carried out. Privacy, regulations, geographic regions, and industry competition data all have to be considered. Model sharing is used instead of data sharing to overcome application differences of knowledge sharing. Smart manufacturing can be used in areas where small and medium-sized enterprises are clustered and have common AI requirements, but require product differentiation.
  4. Information security protection:
    The most common security threats in Taiwanese manufacturing are ransomware, malware attacks, and phishing attacks. In the future, enterprise defense will move towards a new architecture that integrates IT and OT, so that the OT side will also be included in information security protection, and a unified solution will be established to alleviate the challenges of digital transformation.

The future of smart manufacturing focuses on:

The core of smart manufacturing is real-time integration of data and equipment, so latency, security, and computing power will be optimized. Future development will focus on edge computing and 5G, such as AR/VR, machine vision. Beyond the important basic applications, such as digital twins and predictive maintenance, technology will support the overall application. Smart manufacturing can also improve energy optimization, reducing carbon emissions. Green IoT technology will be a key element of future smart manufacturing equipment and factory design.

Taiwan is expected to gain an edge in the micro-factory niche:

Taiwan's manufacturing industry has the advantages of high customization and supply chain clustering, and the smart manufacturing value chain is relatively complete. Many manufacturers have invested in the integration and application of smart solutions, providing a variety of one-stop service options such as equipment health inspection and machine vision, effectively reducing the threshold for introduction. Continuing this development trend, micro-factories will be a key entry point for Taiwanese manufacturers to explore business opportunities in the future.

In the past, there were multiple global divisions of labor in the smart manufacturing value chain. However, with the return of the manufacturing industry to normal, after the turmoil in recent years, short-chain and localized production has risen, so new types of micro-factories have been developed. Micro factories rely on a high degree of automation and accurate analysis to improve product quality with minimal resources. The benefits come from a flexible supply chain, streamlined manpower, and low initial costs. Manufacturers can take advantage of niche markets by making transformations that upgrade and increase product output.

Published by Feb 08, 2022 Source :eettaiwan, Source :finereport, Source :machsync

Further reading

You might also be interested in ...

Headline
Trend
Ensuring Safety and Efficiency in Can-Making Equipment for High-Corrosion, High-Pressure Applications
As the event and stage engineering industry faces increasing demands for speed, safety, and sustainability, temporary structures must evolve beyond traditional construction methods. Modular scaffolding has become a core infrastructure solution, redefining how large-scale events are built, managed, and optimized.
Headline
Trend
The Future of Construction Screws in 2026 - Balancing Innovation, Durability, and Environmental Responsibility
As construction projects become more complex, builders and engineers are seeking screws that combine efficiency, strength, and eco-friendly materials. Patented construction screws are at the forefront of this trend in 2026. This article examines key technological developments, global applications, and leading manufacturers driving innovation in the construction screw market.
Headline
Trend
Automation and Sustainability: The Future of Metalworking
The global metalworking industry is undergoing a major transformation. Two forces—automation and sustainability—are redefining how manufacturers approach efficiency, quality, and competitiveness. Companies that once relied on incremental machinery upgrades are now turning to connected ecosystems, data-driven production, and environmentally responsible practices.
Headline
Trend
Powering the Future of Packaging: Highlights of Next-Gen Automation
With over three decades of development and more than 30 machine models, Taiwan’s automated packaging industry has built a reputation for delivering flexible, efficient, and customizable solutions. These systems are widely used in both food and non-food sectors, providing stable performance and high adaptability to meet diverse packaging demands.
Headline
Trend
Why U.S. and European Cafes Are Embracing Bubble Tea: Market Trends & Business Insights
Over the past decade, bubble tea—once a niche Taiwanese beverage—has become a global sensation. What was once considered a novelty is now a mainstream beverage option in cafés, restaurants, and even hotels across the United States and Europe. The question many in the foodservice industry are asking is: Why are Western businesses adding bubble tea to their menus?
Headline
Trend
Why Smart Factories Are Prioritizing High-Efficiency Oil Mist Filtration
An analysis of how cleaner air leads to longer machine life and lower costs in the CNC industry.
Headline
Trend
Navigating the Future: Taiwan's Lathe Industry in 2025 and Beyond
Taiwan's lathe industry, a cornerstone of the global machine tool sector, is currently at a critical juncture. Known for its expertise in mid-to-high-end CNC lathes and multi-axis machining centers, the industry has a storied history of evolution and resilience. However, the late 2025 landscape is complex, demanding strategic agility to overcome intense international competition and technological shifts.
Headline
Trend
The Application of Materials Science in Medical Device Manufacturing
In the field of medical device manufacturing, materials science plays a central role, directly impacting the safety, durability, and clinical performance of equipment. With the rapid development of smart healthcare and precision medicine, the demands for material performance have become increasingly stringent, particularly in the areas of biocompatibility, antimicrobial properties, and lightweight design.
Headline
Trend
Globalization and Steel-and-Glass Structures: Has the Architectural Divide Between East and West Disappeared?
In the West, concrete is a symbol of strength and efficiency, yet in the hands of a Japanese master, it can become a vehicle for Zen philosophy. In Asia, bamboo is revered as a sustainable material, but in the West, it is being redeveloped into a high-tech, eco-friendly solution. This article will delve into why architects from the East and West, even when faced with the same materials, can create two completely different architectural identities. The root of this lies in a fundamental difference in philosophy: the Eastern focus on living in harmony with nature and the Western drive to challenge physical limits.
Headline
Trend
Sewing Challenges in the Era of Sustainability: Balancing Durability and Eco-Friendliness
In discussions on sustainable textiles, sewing threads may seem insignificant, yet they play a crucial role. The material and production process of threads not only affect the durability of garments but also have long-term environmental impacts. In particular, under the influence of “fast fashion,” low-quality threads often break or fade easily, leading to garments being quickly discarded. In contrast, durable threads made from sustainable sources help extend the life cycle of clothing, reduce waste, and embody the concept of “slow fashion.”
Headline
Trend
Smart Breathing Masks: From Pandemic Essential to Intelligent Healthcare
The evolution of healthcare is a continuous response to the needs of the times. Breathing masks, a medical consumable we once paid little attention to, are a concrete example of this transformative wave. They are shifting from being a cold, professional tool to a gentle companion infused with intelligence and human-centered care.
Headline
Trend
Addressing Packaging Challenges Across Industries: Key Strategies for Food, Chemical, and Pharmaceutical Sectors
Do different industries face the same challenges? While the products of the food, chemical, and pharmaceutical industries vary greatly, their packaging lines share a common set of core challenges: how to ensure quality and safety while balancing high efficiency and regulatory compliance. As a result, customized packaging solutions have become the mainstream. Packaging machines are no longer single-function devices for "capping and filling" but rather comprehensive systems designed to meet the specific regulations of each industry.
Agree