Introduction to the Basic Principles of Hydraulics
Knowledge

Introduction to the Basic Principles of Hydraulics

The function of the hydraulic transmission system is to transmit power and motion, and the hydraulic control system must make the output of the hydraulic system meet specific performance requirements.
Published: Sep 12, 2022
Introduction to the Basic Principles of Hydraulics

What is Hydraulic Machinery?

Hydraulic machinery is equipment and tools that increase mechanical strength through the principle of fluid mechanics. Take heavy equipment as an example, where hydraulic fluid is delivered to actuators in the equipment at high pressure using hydraulic pumps. The hydraulic pump is driven by an engine or an electric motor. Control the hydraulic oil to obtain the required pressure or flow by manipulating various hydraulic control valves. The hydraulic components are connected by hydraulic pipes. Like the pneumatic system, the hydraulic system is based on Pascal's law. Any pressure applied to a fluid in a closed system at any point will be transmitted to all sides with the same pressure. Hydraulic systems use incompressible fluids as the working medium. Hydraulic mechanical equipment is widely used because of its large transmission power and transmission with fine pipes and flexible hoses, so its power density is high, the actuators with applicable power are wide and flexible, and the pressure area is appropriately changed to increase the force huge. Compared with the mechanical system composed of gears and shafts, the fluid resistance of the hydraulic system flowing through the pipeline will cause a certain power loss.

Basic Concepts of Hydraulics:

A Hydraulic is a device that uses high-pressure hydraulic oil to do work after being controlled by some mechanical parts, and its purpose is to control the movement of the load. In many high-pressure and large-capacity machinery, hydraulic pressure is usually the only choice, which is a must for those who learn hydraulics.

Pascal Principle and Hydraulic Transmission:

The most basic theory of the hydraulic system is the Pascal principle. In a closed container, the fluid pressure is equal at each point, and the direction is perpendicular to the surface. Using this principle, a small force at A can push a heavy object at B.

What are the Components of the Hydraulic Device?

The hydraulic system is composed of an oil tank, hydraulic pump, control valve, driver, and some auxiliary parts. The function of each component of the hydraulic system is to be responsible for energy conversion. Among them, only oil is an exception. It does not perform any energy conversion but only acts as a medium for energy conversion.

  1. Hydraulic pump:
    The hydraulic pump is driven by a motor or an engine. From an energy point of view, its function is to convert the mechanical energy generated by the motor or engine into fluid energy. From a mechanical point of view, the pump only uses the atmospheric pressure difference or potential energy difference, the liquid is sucked from one end and discharged from the other end.
  2. Actuator:
    The function of the actuator is to convert fluid energy into mechanical energy to push the load movement. It can be divided into the hydraulic cylinder and hydraulic motor. The hydraulic cylinder makes the load move linearly, and the hydraulic motor makes the load rotate.
  3. Control valve:
    In the hydraulic system, the pressure of the oil is used to control the output of the driver, the flow of oil is used to control the speed of the driver, and the direction of the flow of oil is used to control the direction of movement of the driver. Therefore, the pressure control valve, flow control valve, the directional control valve is the most basic and indispensable in the hydraulic system.
  4. Tank:
    The hydraulic oil used in the hydraulic system must be recycled and reused, so the oil tank is used to store the hydraulic oil on the one hand, and the mounting seat of the motor and pump on the other hand.
  5. Hydraulic accessories:
    Hydraulic accessories are used to enhance the function of the hydraulic system, such as a filter to remove impurities in the oil, an oil cooler to prevent the oil temperature from being too high, a pressure accumulator, and various piping components.
  6. The Definition of Pressure and the Unit of Use:
    The definition of hydraulic pressure is the same as the definition using the unit of air pressure, the difference is that hydraulic pressure has no vacuum pressure.

Advantages and Disadvantages of Hydraulic Transmission:

The efficiency of hydraulic system energy conversion: According to the law of immortality of energy, there can be different forms of mutual conversion, but there must be a loss in each conversion, and the lost energy will be dissipated in the form of heat. The energy utilization rate of the hydraulic system is necessarily not high, generally below 50%, or even lower, usually about 30~40%.

The maneuverability of the hydraulic system: The hydraulic system is used as the driving device of the system, and the special feature of hydraulic pressure is important for machinery that requires large output and high positioning accuracy. The energy efficiency of the hydraulic system is bad, but the industry is using more and more.

Advantages of Hydraulics:
  • Small size, large output: The hydraulic pressure is generally around 70 kg/cm2, and can also be as high as 500 kg/cm2.
  • There is no danger of overloading: A pressure relief valve is installed in the hydraulic system. When the pressure exceeds the set pressure, the valve opens, and the hydraulic oil flows to the oil tank through the pressure relief valve.
  • Output adjustment is easy: The output adjustment of the hydraulic device is simple, if the set pressure of the pressure control valve can be easily achieved.
  • Speed adjustment is easy: The speed adjustment of the hydraulic system is simple, if the set flow rate of the pressure control valve is adjusted, it can be easily achieved, and step-less speed change is possible.
  • Smooth movement and easy reversal: Due to the high incompressibility of the liquid, the hydraulic oil is not allowed to flow into or out of the drive, and the speed of the load will stop immediately. And the inertia generated by the movement of the load will be absorbed by the hydraulic oil, so there is no need to install any braking device at all. And because the mechanism of the liquid driver is simple, its inertia is small, so the movement is smooth and the reversal is easy.
  • Easy to automate: Hydraulic equipment is equipped with solenoid valves, electrical components, sensors, programmable controllers, and microprocessors, which can be assembled into various automatic machines.
  • High durability: Most of the components of hydraulic equipment are almost immersed in hydraulic oil, and most of the hydraulic oil contains a rust inhibitor, its resistance to rust and wear resistance is good, and the durability of the equipment is high.
Disadvantages of Hydraulics:
  • Poor piping will cause leakage of hydraulic oil, which will not only pollute the workplace but cause a fire hazard.
  • The viscosity of hydraulic oil is greatly affected by temperature. When the oil temperature rises, the viscosity decreases, and when the oil temperature drops, the viscosity increases. The change of viscosity will affect the flow and make the speed of the drive unstable.
  • The hydraulic system converts the mechanical energy output by the engine or motor into fluid energy. After some adjustments are made through the valve, the fluid energy is converted into mechanical energy by the driver to drive the load. Because the energy is converted many times, the loss is large. Its energy efficiency is lower than that of traditional machinery.
  • The energy lost during energy conversion will be dissipated in the form of heat, and the heat will be transmitted to the equipment through the hydraulic oil, resulting in abnormal heating of the system.
  • To reduce the viscous friction loss when the oil flows, the flow rate of the oil must be limited to make it a steady flow, thus affecting the working efficiency of the hydraulic equipment.
  • The hydraulic system uses many various control valves, joints, and pipes. To prevent leakage and loss, the machining accuracy of the components is required to be high, and professional piping technology is also required.

What is Hydraulic Circuit?

The hydraulic circuit is a system that connects the various components that transmit the liquid. The purpose of such a system is to control the fluid flow therethrough or to control the fluid pressure. Hydraulic machinery equipment uses hydraulic circuits to move heavy objects. The approach to describing fluid systems from individual components is inspired by circuit analysis. Circuits are easier to analyze when the electronic components are independent and linear. Likewise, hydraulic circuit theory is easier to analyze when considering mutually independent linear elements.

Components of a hydraulic circuit include passive (passive) devices such as pipes or transmission lines, and powered (active) devices such as power packs or pumps. Hydraulic circuit theory is particularly applicable to systems with long and small pipes and separate pumps, such as flow systems in chemical processes, or micro-scale devices.

What Types of Hydraulic Circuits are There?
  • The open-middle circuit uses a pump to provide a continuous flow of liquid that returns to the tank through the open-middle channel of the control valve. In other words, if the control valve is in the neutral position, it provides an open return passage to the tank without pumping out the oil at high pressure. Once the control valve is actuated (change of valve position), it will direct the oil into/out of the actuator and the tank. Because the output of the pump is constant, the pressure of the oil will rise and fall with the amount of resistance encountered. If the pressure rises too high, the oil will return to the tank through the overflow valve. Multiple control valves can be integrated into series. Dosing pumps can be used for this type of circuit, which is inexpensive to operate.
  • A closed circuit is a circuit that provides sufficient pressure to the control valve regardless of whether any valve operates. The flow rate of the hydraulic pump is variable, and the flow rate of the pump is small until no one operates the valve. Since the valve changes the valve position, the spool of the valve does not have to open the middle return oil passage to the oil tank. Multiple valves can be connected in parallel, and the system pressure is equal to all valves.
  • Open loop: In the open-loop system, the suction port of the pump and the oil return port of the motor are both connected to the hydraulic oil tank, which is also an open/closed circuit. The mid-pass circuit uses a pump to provide a continuous flow of liquid. The fluid flows back to the tank through the mid-passage of the control valve. At this time, the control valve is in the neutral position to provide an open return channel to return to the tank and prevent the fluid from being pumped into high pressure. Additionally, once the control valve is operated, it directs fluid to/from the actuator and reservoir. Since the pump output is constant, the pressure of the oil will increase with the resistance encountered. If the pressure rises too high, the oil will return to the tank through the relief valve. Several control valves can be connected in series with each other. Dosing pumps can be used for this type of circuit, which is inexpensive to operate.
  • Closed loop: In a closed-loop system, the return port of the motor is directly connected to the suction port of the pump. To maintain pressure on the low-pressure side, the circuit has a charge pump that supplies filtered cold oil to the low-pressure side. Closed loop circuits are typically used as hydrostatic transmissions in-vehicle applications. The advantage of a closed loop is that there is no directional valve at all, so the response is fast, and the loop can work at higher pressure. The rotation angle of the pump can provide positive and negative liquid flow directions. On the downside, cooling can be an issue as the exchange of fluid flow is limited, and the pump is also difficult to use for other hydraulic functions. In the circuit of the high-power closed-loop system, to increase the amount of oil for cooling and filtering, a refill valve must be installed so that the amount of oil exchanged is greater than the basic leakage of the pump and motor. The replenishment valve is usually integrated into the casing of the motor to cool the circulating oil in the casing of the motor itself. Losses from the internal circulation of the motor housing and losses from the ball bearings can be significant since the motor speed of the vehicle can reach 4000-5000 r/min, or even higher at full speed. Leakage, like an additional charge, will be provided by the charge pump. If it is set to be used in high-pressure and high motor speed drives, a large displacement charge pump is important. When driving at high speed for a long time, if a hydrostatic transmission is used, high oil temperature is usually the main problem. High oil temperatures will drastically reduce the life of the transmission. To suppress oil temperature, transportation equipment must reduce system pressure and motor displacement must be limited to the minimum reasonable value. Closed-loop systems are also used in mobile equipment to replace mechanical and hydraulic transmissions. The advantage is that the gear ratio is infinitely variable, and the transmission ratio can be controlled more flexibly according to the load and operating conditions.
Published by Sep 12, 2022 Source :wiki

Further reading

You might also be interested in ...

Headline
Knowledge
Essential for Precision Machining: A Complete Guide to Tungsten Carbide Center Drills
In modern manufacturing, precision is the core standard by which product quality and performance are measured. From aerospace components to medical devices, even a minor deviation can lead to serious consequences. When it comes to precision drilling, a critical challenge is ensuring that a drill bit can be accurately positioned at the start of a cut while maintaining stability during high-intensity operations. The tungsten carbide center drill is the professional tool engineered specifically to solve this problem.
Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Headline
Knowledge
The Power of Color: How the Printing Industry Protects Brand Quality
In the printing industry, color has always been a core element influencing both quality and sensory experience. Whether in packaging, advertising, or publications, color accuracy directly affects consumer perception and trust in a brand. With the rise of digitalization and globalization, companies increasingly demand brand consistency, making color management more than just an aesthetic concern—it is a safeguard for printing quality and brand value. This article explores the importance of color management, the application of ICC color calibration, and Pantone’s role in brand identity, providing a comprehensive overview of the core knowledge and practical value of color management in printing.
Agree