What Is An RF Filter?
Knowledge

What Is An RF Filter?

RF filters are electronic components that are used to allow or prevent selected signals or frequencies in order to eliminate noise or pass through of unwanted signals. Common types are low pass filters, high pass filters, and bandpass filters.
Published: Jun 17, 2021
What Is An RF Filter?

In microwave communication systems, such as radars, test, and measurement systems, etc., microwave radio frequency filters are the key electronic components. The filter is a passive circuit, and after proper design and setting, it can produce microwave radio frequency filtering.

As mobile devices become more powerful and support more and more network frequency band, RF front-end modules have become an indispensable part of mobile devices. For example, a newer mobile phone needs to support at least 3G, 4G, 5G and WiFi, GPS, and other network standards, and each standard requires its RF front-end module. RF front-end modules generally include antenna switches, multiplexers, filters, power amplifiers, and low noise amplifiers, and so on.

Why Do We Need An RF Filter?

With the development of wireless communication applications, people have higher and higher requirements for data transmission speed. In the 2G era, only a small number of people will use their mobile phones to surf the Internet and browse the WAP version of the web, and the required data rate is about 1KB/s. In the 3G era, with the popularity of smartphones, the use of operators’ networks to send and receive emails, and the use of various apps have resulted in a dramatic increase in network traffic. The required data rate is about 50KB/s. In the 4G era, applications such as live broadcast have greatly increased the bandwidth requirements of mobile phone communications, and the required data rate has reached 1MB/s. Not to mention the 5G era that is entering, which requires faster and larger amounts of data transmission.

Corresponding to the increase in data rate is the high utilization of spectrum resources and the complexity of communication protocols. These two issues are complementary: Due to limited spectrum resources, to meet people's demand for data rates, the spectrum must be fully utilized. Therefore, a mobile phone must be able to cover a wide frequency range, so that different people's devices can be used in crowded situations. Only then can sufficient spectrum bandwidth be allocated. At the same time, to meet the data rate requirements, carrier aggregation technology has been used since 4G, so that a device can use different carrier frequency spectrums to transmit data at the same time.

On the other hand, to support a sufficient data transmission rate within a limited bandwidth, communication protocols have become more and more complex, so strict requirements have been put forward for various performances of the radio frequency system.

In the RF front-end module, the RF filter plays a vital role. It can filter out-of-band interference and noise to meet the signal-to-noise ratio requirements of radio frequency systems and communication protocols. As mentioned above, as the communication protocol becomes more and more complex, the demand for the communication protocol inside and outside the frequency band becomes higher and higher, which also makes the design of the filter more and more challenging. In addition, as the number of frequency bands that mobile phones need to support continues to increase since each frequency band needs to have its filter, the number of filters that need to be used in a mobile phone is also increasing.

Filter Technology

The most important indicators of radio frequency filters include quality factor Q and insertion loss. In the current communication protocol, the frequency difference between different frequency bands is getting smaller and smaller, so it needs very good selectivity to let the signals in the passband pass and block the signals outside the passband. The larger the Q, the narrower the passband bandwidth of the filter the better selectivity that can be achieved. In addition to the quality factor Q, insertion loss is also an important parameter. Insertion loss refers to the attenuation of the passband signal by the filter, that is, signal power loss.

At present, the most mainstream implementation methods of RF filters are SAW and BAW. SAW is a surface acoustic RF filter that uses the piezoelectric effect. When a voltage is applied to the crystal, the crystal will undergo mechanical deformation, converting electrical energy into mechanical energy. When this crystal is mechanically compressed or extended, the mechanical energy is converted into electrical energy. Charges are formed on both sides of the crystal structure, allowing current to flow through the terminals and/or forming a voltage between the terminals. In solid materials, alternating mechanical deformations can generate sound waves with a velocity of 3,000 to 12,000 meters per second. In the surface acoustic wave filter, the acoustic wave propagates on the surface and forms a standing wave, the quality factor of which can reach thousands.

Basic of RF filter types

A filter is a device that filters waves. It is a circuit that allows signals in a certain frequency band to pass while blocking signals outside the frequency band. Filters mainly include low-pass filters, high-pass filters, and band-pass filters, which can be divided into passive and active filters according to the working principle of the circuit.

  • Low pass filter:
    Inductance prevents high-frequency signals from passing and allows low-frequency signals to pass, but the characteristics of capacitors are the opposite. A filter whose signal can pass through an inductor or a filter connected to the ground through a capacitor has less attenuation for low-frequency signals than high-frequency signals and is called a low pass filter. The principle of the low pass filters is very simple. It uses the principle that the capacitor passes the high frequency to block the low frequency, and the inductor passes the low frequency to block the high frequency. For the high frequency that needs to be cut off, use the capacitor to absorb the inductance and prevent it from passing; for the low frequency that needs to be released, low pass filter uses the characteristics of the high resistance of the capacitor and the low resistance of the inductance to let it pass.
  • High pass filter:
    The characteristics of a high pass filters are generally expressed by a first-order linear differential equation. The left side of it is the same as the first-order low-pass filter. Only the right side is the derivative of the excitation source instead of the excitation source itself. When a lower frequency passes through the system, there is little or no output, and when a higher frequency passes through the system, there will be less attenuation. In fact, for extremely high frequencies, a capacitor is equivalent to a short circuit. These frequencies can be output at both ends of the resistor. In other words, high pass filter is suitable for passing high frequencies but has a greater obstructive effect on low frequencies, that is, the highest pass filter.
  • Bandpass filter:
    The bandpass filter is a circuit that only allows specific frequencies to pass while effectively suppressing signals at other frequencies. Because of its selectivity to signals, band-pass is widely used in electronic design. For example, the RLC tank is an analog band-pass filter. A band-pass filter refers to a filter that can pass frequency components in a certain frequency range but attenuate frequency components in other ranges to an extremely low level, as opposed to the concept of a band-stop filter.
A new generation of substrate technology achieves 5G breakthroughs

The number of filters in the 4G era is about 60-80, and the number of filters in the 5G era will reach 120-150. Based on the POI optimized substrate, the new SAW filter can provide built-in temperature compensation and can integrate multiple filters on a single chip.

As one of the core components of the mobile communication system, the radio frequency filter is responsible for separating the radio signals transmitted and received by the mobile phone from different frequency bands. It is combined with the power amplifier (PA), Duplexer and Diplexer, Switch, and low noise amplifier (LNA). Together they form the radio frequency front end (RFFE) system. Due to the increasing complexity of 5G terminal design technology, radio frequency filter is estimated that the market’s compound annual growth rate (CAGR) within three years will be higher than 12%, reaching US$18 billion. At the end of 2019, the RFFE market was approximately US$13 billion (including 3G and 4G).

The supply of piezoelectric (POI) substrates for the new generation of 4G/5G ultra saw RF filters  are essential to further enhance its advanced RF front-end product portfolio and the performance of 5G modems and RF systems. The technology is being integrated into multiple product lines, including the Power amplifier module (PAMiD), front-end module (FEMiD), diversity module (DRx), Wi-Fi splitter, GNSS splitter, and RF multiplexer. Considering that to achieve high-speed data transmission, 4G and 5G networks need to use more frequency bands. Therefore, smartphones must integrate a larger number of filters with better performance to ensure signal integrity and communication reliability.

The prospects of the filter market can be described as great, but the filter is still the most challenging module in the RF front-end.

RF Filter Manufacturers
Referral Link
Published by Jun 17, 2021 Source :kknews, Source :eettaiwan, Source :murata

Further reading

You might also be interested in ...

Headline
Knowledge
Essential for Precision Machining: A Complete Guide to Tungsten Carbide Center Drills
In modern manufacturing, precision is the core standard by which product quality and performance are measured. From aerospace components to medical devices, even a minor deviation can lead to serious consequences. When it comes to precision drilling, a critical challenge is ensuring that a drill bit can be accurately positioned at the start of a cut while maintaining stability during high-intensity operations. The tungsten carbide center drill is the professional tool engineered specifically to solve this problem.
Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Agree