Technical Requirements and Application Characteristics of the Lathe Spindle
Knowledge

Technical Requirements and Application Characteristics of the Lathe Spindle

Shaft parts are one typical part of machining. The shaft part is a rotating part whose length is greater than the diameter, and its surface is several outer cylindrical surfaces, conical surfaces, holes, and threads of the same axis.
Published: Dec 13, 2022
Technical Requirements and Application Characteristics of the Lathe Spindle

What is the Spindle?

The machine tool spindle is a typical shaft part. It is one of the key parts of the machine tool. It transmits the rotary motion and torque to the workpiece or tool through the furniture at the end of the spindle. The spindle must bear torque and bending moment during work, and it requires high rotation accuracy. The manufacturing quality of the spindle will directly affect the working accuracy and service life of the entire machine tool. A series of technical requirements are stipulated on the spindle part drawing, such as dimensional accuracy, shape position tolerance, surface roughness, contact accuracy, and heat treatment requirements.

The mechanical spindle refers to the axis on the machine tool that drives the workpiece or tool to rotate. The spindle part is usually composed of the spindle, bearings, and transmission parts. The machine is used to support transmission parts such as gears and pulleys to transmit motion and torque. The motion accuracy and structural rigidity of the spindle components are important factors that determine the processing quality and cutting efficiency. Most machine tools have multiple axes, such as headstock and tailstock on lathes. The largest axis in a machine tool is generally the spindle. Some machine tools can perform more processes, and there may be four, six, or even more spindles. The kind of machine tool is a multi-axis machine tool. For example, row drills and many screw machines are multi-axis machine tools. Although the automatic lathe has two axes, the head shaft, and the tail shaft, only the head shaft is the spindle, so it is still a single-axis machine tool.

The main function of the spindle:
  • Ensure the rigidity of the support.
  • Guarantee rotation accuracy.
  • Connection function.
  • Wear resistance of the inner cone and end face.
  • Static balance and dynamic balance of the spindle assembly.

The Function and Technical Requirements of Each Part of the Spindle:

  • The spindle support journal is used to install the support bearing and is the assembly reference plane of the spindle, its manufacturing accuracy directly affects the rotation accuracy of the spindle.
  • Accuracy of the working surface of the spindle refers to the centering surface of the clamping props or furniture, such as the Morse taper hole, the outer cone of the shaft end, or the outer circle of the flange, etc. The dimensional accuracy, geometric shape accuracy, and contact accuracy of the inner and outer tapered surfaces, the coaxially of the centering surface to the bearing journal, the perpendicularity of the positioning end to the axis of the journal, etc. Their influence on the working accuracy of machine tools can cause clamping errors in furniture or workpieces. The radial runout near the end of the spindle and the radial circular runout from the end face are specified in the technical requirements of the spindle. In addition, to ensure good contact and fit of the taper shank of the taper hole jade top fire tool. It is stipulated that the contact area must be inspected by the standard taper plug gauge and the coloring method.
  • The accuracy of the spindle secondary journal and other surfaces the spindle secondary journal refers to the surface where gears, bushings, and other parts are assembled. When the end face of the adjusting nut runs out, it will cause the pressed bearing ring to tilt, thereby increasing the radial runout of the spindle. This will not only affect the machining accuracy of the workpiece but also reduce the bearing life.
  • The surface roughness of each spindle is different. The surface roughness requirements of each surface of the spindle of the machine tool are as shown in the standard.
  • Hardness of each surface of the spindle the journal surfaces, working surfaces, and other sliding surfaces of the spindle will be subject to different degrees of friction. In the cooperation of sliding bearings, the friction between the journal and the bearing pad requires high wear resistance on the surface of the journal, and its hardness can vary depending on the material of the bearing pad. In the rolling bearing fit, the friction is borne by the bearing ring and the rolling body, so the journal does not require high wear resistance, but it still requires an appropriate increase in its hardness to improve its assembly process and assembly accuracy.

Spindle Performance Index:

  • Rotation accuracy: The radial and axial runouts that occur in the direction that affects the machining accuracy when the spindle rotates are determined by the manufacturing and assembly quality of the spindle and bearings.
  • Dynamic and static stiffness: Mainly determined by the bending stiffness of the spindle, the stiffness, and the damping of the bearing.
  • Speed adaptability: The allowable maximum speed and speed range are determined by the structure and lubrication of the bearing, as well as the heat dissipation conditions.

Mechanical Spindle Maintenance:

  • When using oil circulation lubrication, it is necessary to ensure that the amount of oil in the constant temperature oil tank of the spindle is sufficient.
  • The oil-air lubrication method is just opposite to the oil circulation lubrication. It only needs to fill 10% of the bearing space capacity.

The advantage of circulating lubrication is that it can reduce frictional heating and absorb part of the heat of the spindle assembly when lubrication is satisfied. There are also two types of lubrication for the spindle: oil mist lubrication and injection lubrication.

Mechanical Spindle-related Knowledge:

The oil used in oil mist and oil-air lubrication is generally turbine oil. The oil mist or oil-air lubrication system should be turned on before the spindle of the oil-lubricated machine tool starts to run, and the lubrication system should be turned off after the spindle stops. Water cooling is a common way to cool the spindle. It requires the cooling water to have a certain anti-rust function. If necessary, it is required to properly filter the cooling water. Before the spindle is running, the cooling system should be turned on to cool the spindle. The machine tool spindle can be used at reduced speed, but the corresponding input voltage parameters must be adjusted according to the design characteristic curve of the motor. A spindle lubricated by oil mist or oil-air needs to ensure that the compressed air is dry and clean.

The parameters of the spindle are different, and the requirements for the frequency converter are also different. The frequency converter should be selected to match the parameters of the machine tool spindle, and the rated current of the frequency converter should be at least 1.3 times that of the machine tool spindle, preferably more than 1.5 times. Commonly used lubrication methods for spindles include grease, oil mist, and oil air. Grease lubrication is simple in structure, easy to use, and environmentally friendly. Oil mist lubrication can adapt to higher speeds and is the most widely used, but it has an impact on the environment. Oil-air lubrication has the best effect, can adapt to higher speeds, and has no pollution to the environment, but the price of oil-air lubrication devices is relatively high.

Mechanical Spindle Accelerator:

The speed regulation range of mechanical spindle accelerators varies from 3.5 to 8 times, depending on the manufacturer of the accelerator. Only one manufacturer offers a mechanical spindle speed booster that can increase machine speed by a factor of 10, delivering 2kW of power at a maximum overspeed of 40,000rpm. The spindle is one of the main components of the machining center because its design directly affects the machining efficiency and workpiece quality. Therefore, the spindle design must consider the static and dynamic stiffness, shaft diameter, bearings, design parameters, etc. The performance of the machine tool spindle accelerator mainly depends on the optimal design for the required speed and power transmission ratio. In particular two factors have to be taken into account because they are important in the optimal design of the spindle speed control unit, these two factors are the smallest volume and the smallest transmitted kinetic energy.

To save weight, the volume of the spindle speed control unit must be minimized without reducing the space required for the operation of the machine tool. Mechanical spindle speeders must be designed for long-term production work, and therefore, the transmitted kinetic energy must be minimized to ensure optimum performance. The design of the spindle governor has led to the use of transmissions based on planetary gear sequences (PGTs), as planetary gear sequences, PGTs provide a compact and efficient solution with high speeds and high efficiency. PGTs are used in many machines equipped with automotive gearboxes to extend the constant power range of low-speed spindle drive motors for machine tools.

Published by Dec 13, 2022 Source :kknews

Further reading

You might also be interested in ...

Headline
Knowledge
Essential for Precision Machining: A Complete Guide to Tungsten Carbide Center Drills
In modern manufacturing, precision is the core standard by which product quality and performance are measured. From aerospace components to medical devices, even a minor deviation can lead to serious consequences. When it comes to precision drilling, a critical challenge is ensuring that a drill bit can be accurately positioned at the start of a cut while maintaining stability during high-intensity operations. The tungsten carbide center drill is the professional tool engineered specifically to solve this problem.
Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Agree