Understanding Capacitors: Key Components in Electrical Systems
Knowledge

Understanding Capacitors: Key Components in Electrical Systems

Capacitors are used in AC circuits and pulse circuits. In DC circuits, capacitors generally play the role of blocking DC.
Published: Jul 14, 2023
Understanding Capacitors: Key Components in Electrical Systems

What Is A Capacitor?

A capacitor is a circuit element in which an insulating medium exists between two metal plates. Its unit is Farad, and the symbol is F. Capacitors use the electric field between two conductors to store energy. The charges carried by the two conductors are equal in magnitude but opposite in sign. The capacitor is an important device to improve the power factor in the power system because the load used in industry is mainly the inductive load of the motor, so the capacitive load must be paralleled to balance the power grid.

Capacitance refers to the amount of charge stored at a given potential difference, and a capacitor is a force that moves charges in an electric field. When there is a medium between the conductors, the movement of charges is hindered and the charges are accumulated on the conductors, resulting in the accumulation and storage of charges. In addition to blocking DC and AC, capacitors have many functions, such as power supply filtering, signal filtering, signal coupling, resonance, filtering, and compensating reactive power.

Types of Capacitors

The types of capacitors can be roughly divided into aluminum capacitors, multilayer ceramic capacitors, and tantalum capacitors.

  • According to the different mediums in capacitors: divided into air dielectric capacitors, paper dielectric capacitors, organic film capacitors, ceramic dielectric capacitors, glass glaze capacitors, mica capacitors, and electrolytic capacitors. Among them, electrolytic capacitors are capacitors with polarity. When connecting to the circuit, we must pay attention to the difference between the pins. The wrong connection can easily cause the capacitor to be damaged by the breakdown.
  • According to different structures: capacitors are divided into fixed capacitors, semi-variable capacitors, and variable capacitors. Variable and semi-variable capacitors are often used in circuits that require tuning.

Basic Functions of Capacitors

  • Can be used as a backup power supply:
    When the power supply is interrupted and the driving speed of the IC increases sharply, the load current increases, which may force the line voltage of the power supply to drop, causing the IC to malfunction. To avoid this situation, the power stored in the capacitor when the power line is normal is supplied to the IC to temporarily maintain the line voltage of the power supply. Use as a battery.
  • Decoupling use:
    Take advantage of the properties of alternating current. Refers to the use of external components superimposed on the power line to remove electromagnetically induced noise or high-frequency noise generated by driving high-speed circuits to supply a stable DC voltage. Commonly used in general power circuits.
  • Coupling use:
    The DC offset voltage of the first half of the circuit is removed, and only the AC signal voltage is transmitted to the second half of the circuit. Usually used in audio circuits.
  • Bypass function:
    The bypass capacitor is an energy storage device that provides energy to the local device, it can even out the output of the regulator and reduce the load demand. Like a small rechargeable battery, the bypass capacitor can be charged and discharged to the device. To minimize the resistance, the bypass capacitor should be as close to the power supply pin and ground pin of the load device as possible to prevent the ground potential rise and noise caused by the input value being too large.
  • Filtering effect:
    Theoretically, the larger the capacitance, the smaller the resistance and the higher the passing frequency. But in fact, most of the capacitors exceeding 1uF are electrolytic capacitors, which have a large inductance component, so the resistance will increase when the frequency is high. Sometimes it is seen that there is an electrolytic capacitor with a large capacitance connected in parallel with a small capacitor. At this time, the large capacitor is connected to the low frequency, and the small capacitor is connected to the high frequency. The function of the capacitor is to pass high resistance and low frequency, and pass high frequency and block low frequency. The larger the capacitor, the easier it is for low frequencies to pass, and the smaller the capacitor, the easier it is for high frequencies to pass. Specifically used in filtering, the large capacitor (1000uF) filters the low frequency, and the small capacitor (20pF) filters the high frequency.
  • Energy storage function:
    The energy storage capacitor collects the charge through the rectifier and transfers the stored energy to the output of the power supply through the inverter leads. Aluminum electrolytic capacitors with a voltage rating of 40 to 450VDC and a capacitance of 220 to 150 000uF are more commonly used. Depending on the power supply requirements, the devices are sometimes used in series, parallel, or a combination thereof. For power supplies with a power level exceeding 10KW, bulky can-shaped screw terminal capacitors are usually used. Capacitors are used in signal circuits to perform coupling, oscillation/synchronization, and time constant functions.
  • Oscillation/synchronization:
    Load capacitors including RC, LC oscillators, and crystals fall into this category.
  • Time constant effect:
    This is the common integrator circuit composed of R and C connected in series. When the input signal voltage is applied to the input, the voltage on the capacitor (C) gradually rises. The charging current decreases as the voltage increases.

Filter Applications

In conjunction with resistors, capacitors are often used as the main components of frequency-selective filters. There are many filter designs and topologies available, which can be tailored for frequency and performance by choosing the appropriate component values and qualities.

  • High Pass Filter (HPF)
  • Low Pass Filter (LPF)
  • Band Pass Filter (BPF)
  • Band Stop Filter (BSF)
  • Notch filter
  • Notch filter
  • Equalization filter
  1. Decoupling/Bypass Capacitors:
    Capacitors play a vital role in the stable operation of digital electronics by protecting sensitive microchips from noise on power signals that can lead to abnormal behavior. The capacitors used in this application are called decoupling capacitors and should be placed as close as possible to each microchip for best results, as all circuit traces act as antennas and will pick up noise from the surrounding environment. Decoupling and bypass capacitors are also used in any area of the circuit to reduce the overall effect of electrical noise.
  2. Coupling or DC blocking capacitors:
    Since capacitors can pass an AC signal while blocking DC, they can be used to separate the AC and DC components of a signal. The value of the capacitor does not need to be precise or precise for coupling, but it should be a high value because the reactance of the capacitor drives the performance of the coupling application.
  3. Snubber capacitor:
    In circuits driving highly inductive loads, such as motors or transformers, large transient power spikes can occur due to a sudden discharge of energy stored in the inductive load, which can damage components and contacts. Applying a capacitor limits or buffers voltage spikes in the circuit, making operation safer and the circuit more reliable. In lower power circuits, buffering techniques can be used to prevent spikes from generating unwanted radio frequency interference (RFI), which can cause abnormal behavior in the circuit and make it difficult to obtain product certification and approval.
  4. Pulse Power Capacitors:
    At their most basic, capacitors are tiny batteries and offer unique energy storage capabilities beyond chemically reactive batteries. Bulk capacitors and banks of capacitors are a superior choice for many applications when large amounts of power are required in a short period. Capacitor banks are used to store energy for applications such as pulsed lasers, radar, particle accelerators, and rail guns. A common application for pulsed power capacitors is in a flash on a disposable camera, which is charged and then rapidly discharged through the flash to provide a large pulse of current.
  5. Resonant or tuned circuit applications:
    While resistors, capacitors, and inductors can be used to make filters, certain combinations can also cause resonances to amplify the input signal. These circuits are used to amplify signals at resonant frequencies and generate high voltages from low-voltage inputs, oscillators, and tuned filters. Care must be taken in choosing components in a resonant circuit that can withstand the voltages seen by the components or they will fail quickly.
  6. Capacitive sensing applications:
    While capacitive sensors have been used in a variety of applications for the position, humidity, liquid level, manufacturing quality control, and acceleration, capacitive sensors have recently become a common feature in advanced consumer electronics. Capacitive sensing detects changes in capacitance in the local environment through changes in the dielectric, changes in distance between capacitor plates, or changes in capacitor area.
  7. Capacitor Safety:
    Capacitors should take some safety precautions. As energy storage components, capacitors can store dangerous amounts of energy that can lead to fatal electrical shock and equipment damage, even if they are disconnected from power for an extended period. For this reason, it's always a good idea to discharge capacitors before working on electrical equipment.

Electrolytic capacitors are prone to severe failure under certain conditions, especially when the voltage across polarized electrolytic capacitors is reversed. Capacitors used in high power and high voltage applications can fail violently as the dielectric material decomposes and evaporates.

Published by Jul 14, 2023 Source :zhtw

Further reading

You might also be interested in ...

Headline
Knowledge
Medical Consumables: Global Guardians of Health
Medical consumables are a wide range of products used by healthcare professionals on a daily basis, typically for a single use before being disposed of. Their primary purpose is to ensure patient care, maintain hygiene, and prevent the spread of infection. These items are crucial for everything from routine checkups to complex surgical procedures.
Headline
Knowledge
Closed Suction System: Revolutionizing Respiratory Care
In critical care, airway management is a vital part of sustaining a patient's life. When patients rely on ventilators, clearing respiratory secretions becomes a crucial aspect of daily care. This seemingly simple, yet critically important, procedure has undergone significant evolution over the past few decades, progressing from early open suctioning to today's more advanced and safer Closed Suction System (CSS).
Headline
Knowledge
Understanding Plastic Materials: A Professional Analysis and Application Guide
Plastic materials, due to their diverse properties and wide range of applications, have become indispensable in modern industries and daily life. Choosing the right plastic material for different needs is crucial for optimizing product performance and achieving environmental benefits. The following is a professional review of the characteristics, applications, and pros and cons of the main plastic materials.
Headline
Knowledge
Exploring Rubber Processing Technology: Core and Challenges of Modern Manufacturing
Rubber processing is one of the most critical stages in modern manufacturing. From vehicle tires to industrial equipment seals and various consumer goods, rubber materials are everywhere. As the demand for high-quality and efficient products rises, rubber processing technologies continue to evolve. This article explores the basic knowledge of rubber processing, key technologies, and future trends.
Headline
Knowledge
Understanding the Coffee Robot: A Comprehensive Analysis
This article provides a comprehensive overview of coffee robots—automated machines that brew and serve coffee using advanced robotics and artificial intelligence. It outlines their key features, including AI-driven customization, app connectivity, 24/7 efficiency, and diverse drink options. The report also examines their growing impact on the coffee industry, highlighting benefits for both consumers and businesses such as convenience, consistency, and reduced labor costs. Case studies like CafeXbot, Artly Coffee, and Rozum Café illustrate how coffee robots are reshaping the coffee experience and driving market growth worldwide.
Headline
Knowledge
Understanding PU Foam: Properties, Types, and Industrial Uses
PU foam is no longer merely a cushioning material. It has become a core functional component across sports, medical, fashion, and lifestyle industries. By adjusting density, thickness, and surface feel, PU can meet diverse requirements for breathability, antimicrobial performance, durability, and comfort. It also aligns with brand trends toward eco-friendly formulations and recyclable material solutions.
Headline
Knowledge
Understanding Helical Filters: A Comprehensive Overview
Helical filters are essential components in radio frequency (RF) and microwave engineering, playing a key role in signal filtering and processing. Known for their compact size, high Q-factor, and broad frequency range, these filters are widely used across various industries. This report provides an in-depth look at helical filters, including their structure, operating principles, advantages, limitations, and typical applications.
Headline
Knowledge
Boost Your Device’s Performance: A Guide to Choosing the Right Power Supply
Choosing the right power supply unit (PSU) is crucial for maximizing your device's performance, ensuring stability, and prolonging the lifespan of your components. A PSU is not just a simple component that provides power; it is the heart of your system that ensures each component receives the right amount of power safely and efficiently. This report will guide you through the essential considerations and steps to select the ideal PSU for your needs.
Headline
Knowledge
How to Choose the Ideal Wood Screws for Furniture and Cabinetry
Selecting the right wood screws is essential to building strong, stable, and visually appealing furniture or cabinets. Key factors include screw size, length, thread type, head style, and compatibility with different wood materials. Coarse threads suit softwoods, while fine threads are better for hardwoods. Choosing the proper head type ensures both function and aesthetics, while accounting for environmental changes helps maintain joint integrity. Pre-drilling pilot holes can also prevent splitting, especially in dense wood. By understanding these considerations, woodworkers can achieve durable, high-quality results in their projects.
Headline
Knowledge
How Effective Coolant Management Promotes Sustainable CNC Machining
Sustainable CNC machining increasingly relies on effective coolant management to reduce environmental impact, cut costs, and improve machining performance. Coolants are essential for lubrication, heat control, and chip removal, but improper handling leads to waste and higher expenses. Proper management practices—such as regular monitoring, filtration, recycling, automation, and using eco-friendly coolants—help extend coolant life, maintain machine health, and ensure consistent product quality. Although initial investment may be a barrier, the long-term benefits include cost savings, reduced waste, and enhanced operational efficiency. Future advancements in IoT and AI are expected to further optimize coolant systems, reinforcing sustainability in CNC machining.
Headline
Knowledge
A Complete Guide to Selecting the Ideal Paper Cups for Hot Beverages
This guide provides a detailed overview of how to choose the best paper cups for hot beverages. It explores the different types of cups—single-wall, double-wall, insulated, and eco-friendly—and explains their unique features and ideal use cases. Key factors to consider include beverage temperature, insulation needs, cup size and lid compatibility, environmental impact, and safety standards. The article also outlines best practices for both consumers and businesses to ensure safe use and responsible disposal. Ultimately, selecting the right paper cup depends on balancing functionality, comfort, sustainability, and cost.
Headline
Knowledge
Understanding the Difference Between Reverse Osmosis and Traditional Water Filters
An in-depth comparison between reverse osmosis (RO) and traditional water filters, two widely used methods for purifying drinking water. It outlines how RO uses a semi-permeable membrane to remove dissolved salts, heavy metals, and microorganisms, making it ideal for areas with highly contaminated water. In contrast, traditional filters rely on physical and chemical filtration - often using activated carbon - to improve taste and remove larger particles. While RO systems offer superior contaminant removal, they come with higher costs and water usage. Traditional filters are more affordable and environmentally friendly but less effective against microscopic impurities. The article concludes that the best choice depends on specific water quality needs, and in some cases, combining both systems can offer the most comprehensive solution.
Agree