What is an Oscilloscope?
Knowledge

What is an Oscilloscope?

An oscilloscope is a diagnostic instrument that graphs electrical signals. Whether it is a simple or complex product, it includes electronic components, and its design, verification, and the debugging process require an oscilloscope to analyze the many electrical signals that make the product wake up.
Published: Jan 17, 2023
What is an Oscilloscope?

What is an Oscilloscope?

Oscilloscopes are laboratory instruments commonly used to display and analyze waveforms of electronic signals. The instantaneous voltage signal waveform at a certain time can be displayed. An oscilloscope is an electronic measuring instrument with a wide range of uses. It can convert invisible electrical signals into visible images, which is convenient for people to study the changing process of various electrical phenomena. The oscilloscope uses a narrow electron beam composed of high-speed electrons to hit the screen coated with fluorescent material to produce tiny light spots. Under the action of the signal under test, the electron beam is like the tip of a pen, which can draw the change curve of the instantaneous value of the signal under test on the screen.

The oscilloscope can be used to observe the waveform curves of various signal amplitudes changing with time, and it can be used to test various electric quantities, such as voltage, current, frequency, phase difference, amplitude modulation, etc., in the form of images on the cathode ray tube fluorescent screen an electronic measuring instrument that displays the functional relationship between two or more parameters. There are three types of oscilloscopes: General-purpose oscilloscopes, storage oscilloscopes, and sampling oscilloscopes according to the requirements for different time-domain measurements.

A typical oscilloscope may display alternating current (AC) or pulsed direct current (DC) signal waveforms with frequencies below about 1 hertz (Hz) or above several megahertz (MHz). A high-end oscilloscope can display signals with frequencies ranging from a few hundred gigahertz (GHz). Displays are categorized into so-called horizontal divs and vertical divs. The time axis is displayed from the left on the x-axis and the horizontal line is on the right. Instantaneous voltage is shown on the vertical y-axis when positive voltage values are up and negative voltage values are down.

The traditional oscilloscope is the so-called cathode ray oscilloscope. It produces an image, or scan, by causing a focused electron beam to move, in a pattern across the front panel of a cathode ray tube (CRT). Modern oscilloscopes electronically replicate the CRT model using a liquid crystal display (LCD) similar to those screens on a notebook. The oldest oscilloscopes use microprocessors and display signal waveforms. These microprocessors can use any type of display, including CRT, LCD, and gas plasma. With the rapid development of electronic technology, the oscilloscope market is difficult to obtain or the cost is high due to the cathode ray tube (CRT). The traditional CRT display analog oscilloscope gradually turns to the digital storage oscilloscope. The function of the digital storage oscilloscope is to convert the analog signal into a digital signal after observation, it can observe the signal at the front edge of the trigger, and realize the process control of the oscilloscope and the return of waveform data through the connection between the USB cable and the computer. Although the digital storage oscilloscope has many advantages, it still cannot completely replace it. Compared with the best advantages of analog oscilloscopes in waveform update rate and display resolution. Virtually all oscilloscopes have system settings for an adjustable horizontal sweep and vertical amplitude.

  • The time and the voltage value of the signal.
  • The frequency of the oscillating signal.
  • The movement of a circuit is represented by a signal.
  • How often a particular part of a signal occurs relative to other parts?
  • Whether the fault component distorts the signal?
  • How many signals are direct current (DC) or alternating current (AC)?
  • How much of the signal is noise, and whether the noise changes over time?

What is the Basic Principle of an Oscilloscope?

The function of an oscilloscope is to look at the voltage waveform because the operation of electronic circuits relies on changes in voltage for communication. If you can observe the changes in voltage on the time axis, that is, the waveform, you can know the health of the circuit.

The electron gun is responsible for emitting the electron beam. When the electron beam hits the fluorescent screen coated with phosphor, it will emit light, but this is not enough. To see the change in the signal, two metal plates will be placed in the vertical direction of the electron beam, as long as the signal voltage is applied to it. It will affect the degree of bending of the electron beam in the vertical direction. In this way, when the voltage of the signal changes, the degree of bending of the electron beam will faithfully reflect the size of the signal, and the up and down will appear on the screen. An oscillating light spot, but you can only see a vertical line in this way. If you want to see the waveform, you must let the light spot move from left to right. This action is sweep, so you need a set of horizontal lines the deflection plate can display the waveform on the screen.

When the electron beam hits the phosphor of the screen, the brightness of the light will last for a short period, maybe about 1 ms. This period helps to temporarily fix the waveform on the screen. If it is combined with the vision of the human eye with the persistence feature, the waveform will look more stable. The waveform will still flicker, but you may not feel it unless the scanning frequency is low, you can clearly feel it, but you can see the flickering effect of the waveform directly through the camera.

Oscilloscope Panel:

The panel of the oscilloscope has two groups, one is the vertical menu, and the other is the horizontal menu. These two groups of menus were originally used to control the vertical deflection board and the horizontal deflection board. Although these deflection boards are no longer there, it is still used to control the horizontal and vertical display waveform changes.

Waveforms and Waveform Measurements:

The general term for a pattern that repeats over time is a wave. Sound waves, brain waves, ocean waves, and voltage waves are all repeating patterns. An oscilloscope measures a voltage wave. A waveform is a graphical representation of a wave. Physical phenomena such as vibration and temperature or electrical phenomena such as current or power can be converted into voltage through sensors. A cycle of a wave is the repeated portion of the wave. A voltage waveform displays time on the horizontal axis and voltage on the vertical axis.

Waveforms reveal a great deal of information about a signal. Whenever you see a change in the height of the waveform, you know the voltage has changed. If a flat horizontal line is shown, it means there has been no change during that time. Straight lines and diagonal lines represent linear changes. The voltage rises or falls at a steady rate. Sharp angles on a waveform indicate a sudden change in voltage.

Frequency:

There are usually grid lines on the screen of the oscilloscope, and there are usually 10 divisions horizontally, and the time represented by each division will be displayed in a certain corner of the oscilloscope. The frequency is the reciprocal of the period, and the calculated frequency is 1kHz.

Amplitude:

The amplitude is calculated from the center point of the swing to the peak value. In practice, it is more common to observe the peak-to-peak peak value because it is the most direct and convenient to observe. There is no need to divide by 2 to calculate, and some signals are not symmetrical up and down. Waveform, in this case, is impractical to find the center point and calculate the amplitude, vpp is mostly observed.

What Types of Waves are There?

  • Sine Wave: A sine wave is a fundamental waveform for several reasons. Sine waves have harmonious mathematical properties. The test signal generated by the oscillator circuit of the signal generator is usually a sine wave.
  • Square and Rectangular Waves: A square wave is another common waveform. A square wave is a voltage that turns on and off periodically. A square wave is the standard wave for testing amplifiers. A good amplifier will increase the amplitude of the square wave with minimal distortion.
  • Sawtooth and Triangle Waves: Sawtooth and triangle waves are produced by circuits designed to control voltage linearly. The transitions between the voltage levels of these waves change at a constant rate and these transitions are ramps.
  • Step and pulse shapes: Signals such as steps and pulses that occur rarely or a periodically are called one-shot or transient signals. A step represents a sudden change in voltage, similar to the voltage change you see when you turn on a power switch. A pulse indicates a sudden change in voltage, similar to what you see when you turn a power switch on and off again. A pulse may represent a bit of information transmitted through a computer circuit or a malfunction or defect in a circuit. A collection of pulses propagating together builds up a pulse train. Digital components in a computer communicate with each other using pulses. These pulses can be in the form of a serial data stream, or multiple signal lines can be used to represent values on a parallel data bus.
  • Periodic and Aperiodic Signals: Repetitive signals are periodic signals while constantly changing signals are aperiodic signals. Images are similar to periodic signals, and movies are similar to non-periodic signals.
  • Synchronous and non-synchronous signals: When there is a timing relationship between two signals, these signals are synchronous signals. Clock, data, and address signals inside a computer are synchronous signals. An asynchronous signal is a signal that does not have a timing relationship. Since there is no time correlation between touching the keys on a computer keyboard and the clock inside the computer, these are considered asynchronous signals.
  • Complex waves: Some waveforms combine the properties of sine, square, step, and pulse to produce complex waveforms. Signal information can be embedded in the form of amplitude, phase, and/or frequency changes.
Published by Jan 17, 2023 Source :tek

Further reading

You might also be interested in ...

Headline
Knowledge
Medical Consumables: Global Guardians of Health
Medical consumables are a wide range of products used by healthcare professionals on a daily basis, typically for a single use before being disposed of. Their primary purpose is to ensure patient care, maintain hygiene, and prevent the spread of infection. These items are crucial for everything from routine checkups to complex surgical procedures.
Headline
Knowledge
Closed Suction System: Revolutionizing Respiratory Care
In critical care, airway management is a vital part of sustaining a patient's life. When patients rely on ventilators, clearing respiratory secretions becomes a crucial aspect of daily care. This seemingly simple, yet critically important, procedure has undergone significant evolution over the past few decades, progressing from early open suctioning to today's more advanced and safer Closed Suction System (CSS).
Headline
Knowledge
Understanding Plastic Materials: A Professional Analysis and Application Guide
Plastic materials, due to their diverse properties and wide range of applications, have become indispensable in modern industries and daily life. Choosing the right plastic material for different needs is crucial for optimizing product performance and achieving environmental benefits. The following is a professional review of the characteristics, applications, and pros and cons of the main plastic materials.
Headline
Knowledge
Exploring Rubber Processing Technology: Core and Challenges of Modern Manufacturing
Rubber processing is one of the most critical stages in modern manufacturing. From vehicle tires to industrial equipment seals and various consumer goods, rubber materials are everywhere. As the demand for high-quality and efficient products rises, rubber processing technologies continue to evolve. This article explores the basic knowledge of rubber processing, key technologies, and future trends.
Headline
Knowledge
Understanding the Coffee Robot: A Comprehensive Analysis
This article provides a comprehensive overview of coffee robots—automated machines that brew and serve coffee using advanced robotics and artificial intelligence. It outlines their key features, including AI-driven customization, app connectivity, 24/7 efficiency, and diverse drink options. The report also examines their growing impact on the coffee industry, highlighting benefits for both consumers and businesses such as convenience, consistency, and reduced labor costs. Case studies like CafeXbot, Artly Coffee, and Rozum Café illustrate how coffee robots are reshaping the coffee experience and driving market growth worldwide.
Headline
Knowledge
Understanding PU Foam: Properties, Types, and Industrial Uses
PU foam is no longer merely a cushioning material. It has become a core functional component across sports, medical, fashion, and lifestyle industries. By adjusting density, thickness, and surface feel, PU can meet diverse requirements for breathability, antimicrobial performance, durability, and comfort. It also aligns with brand trends toward eco-friendly formulations and recyclable material solutions.
Headline
Knowledge
Understanding Helical Filters: A Comprehensive Overview
Helical filters are essential components in radio frequency (RF) and microwave engineering, playing a key role in signal filtering and processing. Known for their compact size, high Q-factor, and broad frequency range, these filters are widely used across various industries. This report provides an in-depth look at helical filters, including their structure, operating principles, advantages, limitations, and typical applications.
Headline
Knowledge
Boost Your Device’s Performance: A Guide to Choosing the Right Power Supply
Choosing the right power supply unit (PSU) is crucial for maximizing your device's performance, ensuring stability, and prolonging the lifespan of your components. A PSU is not just a simple component that provides power; it is the heart of your system that ensures each component receives the right amount of power safely and efficiently. This report will guide you through the essential considerations and steps to select the ideal PSU for your needs.
Headline
Knowledge
How to Choose the Ideal Wood Screws for Furniture and Cabinetry
Selecting the right wood screws is essential to building strong, stable, and visually appealing furniture or cabinets. Key factors include screw size, length, thread type, head style, and compatibility with different wood materials. Coarse threads suit softwoods, while fine threads are better for hardwoods. Choosing the proper head type ensures both function and aesthetics, while accounting for environmental changes helps maintain joint integrity. Pre-drilling pilot holes can also prevent splitting, especially in dense wood. By understanding these considerations, woodworkers can achieve durable, high-quality results in their projects.
Headline
Knowledge
How Effective Coolant Management Promotes Sustainable CNC Machining
Sustainable CNC machining increasingly relies on effective coolant management to reduce environmental impact, cut costs, and improve machining performance. Coolants are essential for lubrication, heat control, and chip removal, but improper handling leads to waste and higher expenses. Proper management practices—such as regular monitoring, filtration, recycling, automation, and using eco-friendly coolants—help extend coolant life, maintain machine health, and ensure consistent product quality. Although initial investment may be a barrier, the long-term benefits include cost savings, reduced waste, and enhanced operational efficiency. Future advancements in IoT and AI are expected to further optimize coolant systems, reinforcing sustainability in CNC machining.
Headline
Knowledge
A Complete Guide to Selecting the Ideal Paper Cups for Hot Beverages
This guide provides a detailed overview of how to choose the best paper cups for hot beverages. It explores the different types of cups—single-wall, double-wall, insulated, and eco-friendly—and explains their unique features and ideal use cases. Key factors to consider include beverage temperature, insulation needs, cup size and lid compatibility, environmental impact, and safety standards. The article also outlines best practices for both consumers and businesses to ensure safe use and responsible disposal. Ultimately, selecting the right paper cup depends on balancing functionality, comfort, sustainability, and cost.
Headline
Knowledge
Understanding the Difference Between Reverse Osmosis and Traditional Water Filters
An in-depth comparison between reverse osmosis (RO) and traditional water filters, two widely used methods for purifying drinking water. It outlines how RO uses a semi-permeable membrane to remove dissolved salts, heavy metals, and microorganisms, making it ideal for areas with highly contaminated water. In contrast, traditional filters rely on physical and chemical filtration - often using activated carbon - to improve taste and remove larger particles. While RO systems offer superior contaminant removal, they come with higher costs and water usage. Traditional filters are more affordable and environmentally friendly but less effective against microscopic impurities. The article concludes that the best choice depends on specific water quality needs, and in some cases, combining both systems can offer the most comprehensive solution.
Agree