3 Minutes to Understand What Machine Learning Is
Knowledge

3 Minutes to Understand What Machine Learning Is

What the really is artificial intelligence doing now? Artificial intelligence, machine learning, and deep learning can't tell the difference? Don't worry, we would analyze the differences in an easy-to-understand way. The following will solve the doubts!
Published: Sep 07, 2022
3 Minutes to Understand What Machine Learning Is

What is Artificial Intelligence?

Artificial Intelligence (AI), as the name suggests, is how to be wise. To put it simply, artificial intelligence mainly studies how to use the functions of computers to do some tasks that must be performed by humans; in short, it is the process of performing human intelligence through computers can display intelligence similar to that of humans.

What is Machine Learning

Machine learning (ML) is to use algorithms to classify or predict the data collected. In the future, when new data is obtained, the trained model can be used to make predictions. If these performance evaluations can be achieved through using past data to improve is called machine learning.

ML has a wide range of applications, such as recommendation engines, weather forecasting, face recognition, fingerprint recognition, license plate recognition, medical diagnosis assistance, lie detection, document analysis, speech processing, etc.

What Is Deep Learning?

Such deep learning (DL) techniques are called deep neural networks (DNNs). Neural networks are just a way of constructing functions. When we ask questions and prepare a lot of historical data as "archaeological questions", we hope that we can train the neural network to see new questions and answer them correctly: for example, the neural network for dog recognition can be correctly trained after training. Name unseen dogs arranged in layers that loosely mimic the human brain, learning patterns of patterns.

Wondering where is the difference? Let’s understand them one by one.

What is the difference between artificial intelligence and machine learning?

Machine learning is an architecture included in artificial intelligence. Due to the recent popularity of machine learning, many people misuse artificial intelligence and machine learning. Artificial intelligence is a broad term. As long as it can show intelligent behavior, it can be called artificial intelligence. Even if there are many rule bases behind it, as long as it looks smart, it can also be called artificial intelligence.

Is there any invincible machine learning algorithm (model) that can be applied to any?

There is no one algorithm suitable for all analysis, which is also commonly known as the no free lunch theorem. It is necessary to work hard on the data, and the models used vary according to the data. To discuss the quality of the algorithm, it must be based on specific problem types. But there are some useful models based on rules of thumb, such as Logistic Regression, SVM, Random Forest, and common ones in Deep learning: CNN (image recognition), RNN (text, speech), GAN, etc...

Can machine learning be used in stock market, bond, fund forecasting?

It is difficult to rely solely on the historical data of the stock market, which is commonly known as technical analysis. The reason is because machine learning is a rule behind finding data. If the rule behind it keeps changing, it is basically difficult for a machine to learn something, but it happens that the rules behind the stock market will keep changing. Suppose the machine uses the data of the past ten years to find that as long as a certain K-line rises twice in a row, there is an 80% chance that it will rise for the third time, but it is possible that this rule will fail tomorrow, and even make you lose a lot of money. But it is possible if combined with more information, such as real-time semantic analysis of social networks or financial news, if there is information about an iPhone battery explosion today, the machine learning program can instantly determine the probability of the stock price falling, and make a buy action. But it is also possible that there is negative news, but the price still keeps rising. For example, the negative news of Bitcoin keeps rising, but the price keeps rising, breaking through new historical highs. On the other hand, the price of other cryptocurrencies has no negative news but keeps falling. Therefore, it is quite difficult to use machine learning to predict success in the stock market.

What is the difference between machine learning, data science and statistics?

Data science can be called data science as long as it uses data to analyze, and it can only use traditional statistics for analysis and prediction. Learn to equate.

Statistics has many mathematical proofs and assumptions, and it focuses on mathematical interpretability. A lot of statistical concepts are used behind the machine learning model, such as Linear regression, which is also derived from statistics. In addition, in practice, many machine learning relies on empirical rules and results theory to infer. For example, judge which model is better according to the prediction results, rather than prove it by mathematical deduction.

Kinds of Machine Learning?
  1. Supervised learning
  2. Unsupervised learning
  3. Semi-supervised learning
  4. Reinforcement learning
What is the difference between machine learning and deep learning?

Deep learning was originally a part of machine learning, but the speed of deep learning was too slow at that time, so it was replaced by SVM and other algorithms. However, due to the growth of GPU hardware performance in recent years, deep learning has overcome previous speed problems and achievements. Obviously, after it became a hot topic, many people discussed deep learning as a separate field from machine learning. And the origin of the name "deep" in deep learning is because there are many layers in the neural network-like hidden layer, which visually looks very deep.

Published by Sep 07, 2022 Source :Medium

Further reading

You might also be interested in ...

Headline
Knowledge
Medical Consumables: Global Guardians of Health
Medical consumables are a wide range of products used by healthcare professionals on a daily basis, typically for a single use before being disposed of. Their primary purpose is to ensure patient care, maintain hygiene, and prevent the spread of infection. These items are crucial for everything from routine checkups to complex surgical procedures.
Headline
Knowledge
Closed Suction System: Revolutionizing Respiratory Care
In critical care, airway management is a vital part of sustaining a patient's life. When patients rely on ventilators, clearing respiratory secretions becomes a crucial aspect of daily care. This seemingly simple, yet critically important, procedure has undergone significant evolution over the past few decades, progressing from early open suctioning to today's more advanced and safer Closed Suction System (CSS).
Headline
Knowledge
Understanding Plastic Materials: A Professional Analysis and Application Guide
Plastic materials, due to their diverse properties and wide range of applications, have become indispensable in modern industries and daily life. Choosing the right plastic material for different needs is crucial for optimizing product performance and achieving environmental benefits. The following is a professional review of the characteristics, applications, and pros and cons of the main plastic materials.
Headline
Knowledge
Exploring Rubber Processing Technology: Core and Challenges of Modern Manufacturing
Rubber processing is one of the most critical stages in modern manufacturing. From vehicle tires to industrial equipment seals and various consumer goods, rubber materials are everywhere. As the demand for high-quality and efficient products rises, rubber processing technologies continue to evolve. This article explores the basic knowledge of rubber processing, key technologies, and future trends.
Headline
Knowledge
Understanding the Coffee Robot: A Comprehensive Analysis
This article provides a comprehensive overview of coffee robots—automated machines that brew and serve coffee using advanced robotics and artificial intelligence. It outlines their key features, including AI-driven customization, app connectivity, 24/7 efficiency, and diverse drink options. The report also examines their growing impact on the coffee industry, highlighting benefits for both consumers and businesses such as convenience, consistency, and reduced labor costs. Case studies like CafeXbot, Artly Coffee, and Rozum Café illustrate how coffee robots are reshaping the coffee experience and driving market growth worldwide.
Headline
Knowledge
Understanding PU Foam: Properties, Types, and Industrial Uses
PU foam is no longer merely a cushioning material. It has become a core functional component across sports, medical, fashion, and lifestyle industries. By adjusting density, thickness, and surface feel, PU can meet diverse requirements for breathability, antimicrobial performance, durability, and comfort. It also aligns with brand trends toward eco-friendly formulations and recyclable material solutions.
Headline
Knowledge
Understanding Helical Filters: A Comprehensive Overview
Helical filters are essential components in radio frequency (RF) and microwave engineering, playing a key role in signal filtering and processing. Known for their compact size, high Q-factor, and broad frequency range, these filters are widely used across various industries. This report provides an in-depth look at helical filters, including their structure, operating principles, advantages, limitations, and typical applications.
Headline
Knowledge
Boost Your Device’s Performance: A Guide to Choosing the Right Power Supply
Choosing the right power supply unit (PSU) is crucial for maximizing your device's performance, ensuring stability, and prolonging the lifespan of your components. A PSU is not just a simple component that provides power; it is the heart of your system that ensures each component receives the right amount of power safely and efficiently. This report will guide you through the essential considerations and steps to select the ideal PSU for your needs.
Headline
Knowledge
How to Choose the Ideal Wood Screws for Furniture and Cabinetry
Selecting the right wood screws is essential to building strong, stable, and visually appealing furniture or cabinets. Key factors include screw size, length, thread type, head style, and compatibility with different wood materials. Coarse threads suit softwoods, while fine threads are better for hardwoods. Choosing the proper head type ensures both function and aesthetics, while accounting for environmental changes helps maintain joint integrity. Pre-drilling pilot holes can also prevent splitting, especially in dense wood. By understanding these considerations, woodworkers can achieve durable, high-quality results in their projects.
Headline
Knowledge
How Effective Coolant Management Promotes Sustainable CNC Machining
Sustainable CNC machining increasingly relies on effective coolant management to reduce environmental impact, cut costs, and improve machining performance. Coolants are essential for lubrication, heat control, and chip removal, but improper handling leads to waste and higher expenses. Proper management practices—such as regular monitoring, filtration, recycling, automation, and using eco-friendly coolants—help extend coolant life, maintain machine health, and ensure consistent product quality. Although initial investment may be a barrier, the long-term benefits include cost savings, reduced waste, and enhanced operational efficiency. Future advancements in IoT and AI are expected to further optimize coolant systems, reinforcing sustainability in CNC machining.
Headline
Knowledge
A Complete Guide to Selecting the Ideal Paper Cups for Hot Beverages
This guide provides a detailed overview of how to choose the best paper cups for hot beverages. It explores the different types of cups—single-wall, double-wall, insulated, and eco-friendly—and explains their unique features and ideal use cases. Key factors to consider include beverage temperature, insulation needs, cup size and lid compatibility, environmental impact, and safety standards. The article also outlines best practices for both consumers and businesses to ensure safe use and responsible disposal. Ultimately, selecting the right paper cup depends on balancing functionality, comfort, sustainability, and cost.
Headline
Knowledge
Understanding the Difference Between Reverse Osmosis and Traditional Water Filters
An in-depth comparison between reverse osmosis (RO) and traditional water filters, two widely used methods for purifying drinking water. It outlines how RO uses a semi-permeable membrane to remove dissolved salts, heavy metals, and microorganisms, making it ideal for areas with highly contaminated water. In contrast, traditional filters rely on physical and chemical filtration - often using activated carbon - to improve taste and remove larger particles. While RO systems offer superior contaminant removal, they come with higher costs and water usage. Traditional filters are more affordable and environmentally friendly but less effective against microscopic impurities. The article concludes that the best choice depends on specific water quality needs, and in some cases, combining both systems can offer the most comprehensive solution.
Agree