5G Smart Grid Application Opportunities and Trends
Trend

5G Smart Grid Application Opportunities and Trends

In recent years, advanced countries have carried out power grid upgrade plans. To promote energy conservation and carbon reduction policies, Taiwan has advanced the Automated Metering Infrastructure (AMI) as one of its national energy conservation and carbon reduction plans, with 4G/5G and other communication industries included in the plan. The development and integration of smart grid applications and 5G communication technology will be important industrial advances worth paying attention to.
Published: Jan 26, 2022
5G Smart Grid Application Opportunities and Trends

What is a Smart Grid?

A Smart Grid is a grid of modern electricity transmission lines that uses communication technology to detect and collect digital or analog information on the status of consumer power usage, and uses this information to coordinate electric power supply within the system. This information can be used to adjust the production, transmission, and distribution of electricity, or adjust the power consumption of household appliances and enterprise users, saving energy, reducing losses, and enhancing the reliability of the power grid.

The recent development of smart grids:

Promoting "smart meter infrastructure", "planning smart grid" and "smart power service" is the focus of smart grid development. Taiwan has carried out smart meter testing and demonstration programs in recent years, and actively assists Taipower in promoting smart grid. Communication technologies that will be used include 3G/4G, RF Mesh, (Radio Frequency mesh),PLC (power-line communication), Wi-SUN, (Wireless Smart Ubiquitous Network), Wi-Fi, wired optical fiber, etc. In recent years, the technology of Low-Power Wide-Area Network (LPWAN) has gradually matured. The low data volume requirements of smart grids make them very suitable for using LPWAN communication systems, such as LoRa, NB-IoT, and other technologies. With its high-speed transmission, huge capacity, low latency, network slicing, edge computing, and other communication potentials, 5G will bring more diversified applications to smart grids.

5G smart grid application scenarios and communication requirements:

The 5G system uses three main types of slicing technologies; eMBB (Enhanced Mobile Broadband), URLLC (Ultra-reliable and Low Latency Communications), mMTC (massive Machine Type Communications), and other applications, which can respectively meet the application requirements of various power services in the smart grid. 5G network slicing technology can be used to provide diversified services for various needs of the power grid.

The power grid can be transformed from a traditional transmission/distribution/transformation system into a smart grid. Small and decentralized energy systems are effectively managed by analyzing power consumption patterns to determine the most effective method of providing safe and efficient power transmission and transformation, and flexible power distribution. Each communication network has its own characteristics so must be coordinated with the entire power system. 5G's network slicing technology can accommodate different transmission levels. Whether it is an image monitoring application that requires a large bandwidth, or a power distribution management that requires a small bandwidth and low latency, 5G can support the different requirements of each application. 

Distributed Energy Resources (DER):

The international trend of energy generation is towards a higher and higher proportion of renewable energy, moving from centralized power plants to small, decentralized, diverse energy systems. Household solar power generation, electric scooters, and home energy management systems are becoming more mainstream. The amount of decentralized energy continues to increase, and the global DER capacity is expected to grow from 132.4 GW in 2017 to 528.4 GW in 2026. To meet the 2025 domestic energy ratio target of 30% coal, 50% gas, 20% renewable energy, maintaining the balance of supply and demand in the power system is a problem that power companies will need to face and solve. As renewable energy power generation is especially uncertain, difficult to predict accurately, and difficult to control, these challenges will present opportunities for breakthrough in 5G technology.

To coordinate diverse and small-scale distributed energy sources, Taipower will need to introduce virtual power plant technology. By using a 5G high-efficiency and a low-latency network with smart and real-time management, its overall power availability and reliability can be made equivalent to that of a traditional power plant.  

In the past, low-latency requirements were met by TV stations through self-built optical fiber networks. However, with decentralized energy, the cost of self-distributed optical fiber solutions is too high. Therefore, 5G network slicing and edge computing technologies can be used to establish communication. VPP (Virtual Power Plant) intelligent control is established on the edge cloud to ensure stable transmission and low latency. Through network slicing, Taipower helps establish a private network with the participating party on the existing communication network to ensure the security of the power grid and avoid malicious attacks.

Distributed Automation (DA)/Feeder Automation (FA):

In its early stages, the distribution network only had a simple protection circuit design for overcurrent and overvoltage. No communication network or back-end computer management systems were built, so it was difficult to achieve segmental isolation. Distribution automation (DA) is a powerful information management system that accurately monitors the power distribution network, locates faults, and obtains information from adjacent power distribution terminal equipment which can be used to quickly isolate and eliminate these faults.

Feeder automation (FA) refers to automation of substation transformer equipment, to automatically detect, isolate or correct feeder faults. It is an important part of distribution automation. The reliability of the power system is very high, with the accident isolation time shortened to milliseconds, ensuring the uninterrupted supply of power. To meet the very high requirements for distribution/feeder automation, and low transmission delay between base stations and distribution/feeder terminal equipment, 5G URLLC technology is required. 5G technology can replace the existing fiber-optic infrastructure, providing millisecond-level network transmission delay.  5G offers a better solution for wireless communications on the distribution/feeder automation grid, enabling faster and more accurate grid control.

Inspection inside/outside the substation:

Possible applications of ultra-high-speed 5G technology in smart grids include high-quality video inspection of grid equipment and structures. High-quality image and voice inspections inside and outside the substation are mainly performed using audio-visual inspection robots. The inspection robot can be integrated with multi-channel, high-definition cameras and various IoT environment sensors, to instantly return high-definition images and IoT-related inspection data to the control center in the substation.

Audio and video inspection of the power distribution room in the substation, and multi-channel high-definition audio and video monitoring can be achieved by installing the appropriate equipment in the power distribution room. Relevant information such as the operating status, and image and equipment status can be sent back to the control center to improve the automation of inspection in substations. Applications outside the substation mainly include unmanned aerial vehicle (UAV) inspections of transmission lines, etc. UAV inspections of transmission lines are mainly aimed at line inspections of high-voltage transmission networks.

Advanced Metering Infrastructure (AMI):

With the increase in demand, all countries are actively promoting the construction of smart grids, hoping to promote the optimal allocation and operation of power resources through real-time control and demand-side management, achieve the goals of energy conservation and carbon reduction, and improve the installation and operation of smart meters. Most of the electricity meters are installed in basements and other places with poor reception, and the density of electricity meters in urban areas is high. In addition, the general public will cause a backlash against the installation of obvious communication devices. At present, the technology adopted by most manufacturers in the world is to deploy RF Mesh with PLC. RF Mesh must be installed with a large number of concentrators, which requires a large space, but the space is not easy to obtain. The power system has high stability. To meet the requirements of security and confidentiality, using slicing technology, a wireless private network can be virtualized to perform higher-strength security isolation and improve the security, stability, and flexibility required by smart meter reading.

5G technical features will accelerate the realization of the smart grid:

5G networks and smart grids are both important trends for the future development of the IT industry. In addition to optical fiber networks, the application of 5G network low-latency characteristics in control applications can bring new communication solutions to smart grids. Extensive, slicing technology can simultaneously provide eMBB, URLLC, mMTC, and other different application scenarios. Network-Function Virtualization (NFV) can be used for a secure isolation network like a private network for smart grids, and bring better security for the transmission of grid data. In response to the diverse application scenarios of smart grids, 5G networks also provide different levels of network access, providing users with more flexible configurations, and enabling smart grids to accelerate the pace of implementation.

Future Outlook:

The smart grid, with all its smart technologies, tools, and equipment, will have a positive impact on the national grid in terms of efficiency, reducing emissions, and improving its durability and safety. Any new technology, especially disruptive technology, will have difficulties that must be overcome, and so does the smart grid. A reliable, safe, and cost-effective grid are expected in everyday life, and smart grids are gradually meeting this demand.

Published by Jan 26, 2022 Source :itri

Further reading

You might also be interested in ...

Headline
Trend
The Application of Materials Science in Medical Device Manufacturing
In the field of medical device manufacturing, materials science plays a central role, directly impacting the safety, durability, and clinical performance of equipment. With the rapid development of smart healthcare and precision medicine, the demands for material performance have become increasingly stringent, particularly in the areas of biocompatibility, antimicrobial properties, and lightweight design.
Headline
Trend
Globalization and Steel-and-Glass Structures: Has the Architectural Divide Between East and West Disappeared?
In the West, concrete is a symbol of strength and efficiency, yet in the hands of a Japanese master, it can become a vehicle for Zen philosophy. In Asia, bamboo is revered as a sustainable material, but in the West, it is being redeveloped into a high-tech, eco-friendly solution. This article will delve into why architects from the East and West, even when faced with the same materials, can create two completely different architectural identities. The root of this lies in a fundamental difference in philosophy: the Eastern focus on living in harmony with nature and the Western drive to challenge physical limits.
Headline
Trend
Sewing Challenges in the Era of Sustainability: Balancing Durability and Eco-Friendliness
In discussions on sustainable textiles, sewing threads may seem insignificant, yet they play a crucial role. The material and production process of threads not only affect the durability of garments but also have long-term environmental impacts. In particular, under the influence of “fast fashion,” low-quality threads often break or fade easily, leading to garments being quickly discarded. In contrast, durable threads made from sustainable sources help extend the life cycle of clothing, reduce waste, and embody the concept of “slow fashion.”
Headline
Trend
Smart Breathing Masks: From Pandemic Essential to Intelligent Healthcare
The evolution of healthcare is a continuous response to the needs of the times. Breathing masks, a medical consumable we once paid little attention to, are a concrete example of this transformative wave. They are shifting from being a cold, professional tool to a gentle companion infused with intelligence and human-centered care.
Headline
Trend
Addressing Packaging Challenges Across Industries: Key Strategies for Food, Chemical, and Pharmaceutical Sectors
Do different industries face the same challenges? While the products of the food, chemical, and pharmaceutical industries vary greatly, their packaging lines share a common set of core challenges: how to ensure quality and safety while balancing high efficiency and regulatory compliance. As a result, customized packaging solutions have become the mainstream. Packaging machines are no longer single-function devices for "capping and filling" but rather comprehensive systems designed to meet the specific regulations of each industry.
Headline
Trend
The AI Revolution in Healthcare: Redefining the Future of Medicine
The explosive rise of artificial intelligence (AI) is ushering in an unprecedented transformation within the healthcare industry. No longer just a data analysis tool, AI has evolved into a smart assistant capable of deep collaboration with human experts and even operating independently. From diagnostic assistance to personalized treatment plans, AI is making healthcare more efficient, precise, and accessible to every patient.
Headline
Trend
Waterless Printing & Smart Tech: The New Eco-Standard for Label Printing
As global expectations for environmental protection rise, both consumers and brands are placing greater emphasis on the environmental impact of a product’s entire lifecycle—from production to recycling. Labels and stickers, as common products in the printing industry, have traditionally relied on large amounts of water, solvents, and energy in their production processes, creating a significant environmental burden. Today, sustainable printing is no longer an optional add-on but a key strategy for building brand trust and enhancing market competitiveness. Brands with clear eco-friendly initiatives are more likely to gain favor from both policymakers and the market, positioning themselves at the forefront of the global sustainability trend.
Headline
Trend
Modern Scaffolding: A Guide to Revolutionizing Construction Safety & Efficiency
From the construction of the ancient pyramids of Egypt to the rise of modern skyscrapers, one crucial temporary structure has always played the role of an unsung hero: scaffolding. This support system not only provides a safe foothold for workers but has also continuously evolved from a simple framework into a highly efficient, precise, and intelligent engineering system.
Headline
Trend
The Connection Between Medical Device Manufacturing and Machine Tools
The medical industry is experiencing rapid growth, driven by an aging population, rising chronic diseases, and technological advancements. The demand for high-precision medical devices is increasing, requiring manufacturing processes that ensure safety, reliability, and performance. Machine tools play a critical role in meeting these stringent requirements, enabling the production of complex medical instruments with exceptional accuracy.
Headline
Trend
Smart Manufacturing in Printing: A New Era of Efficiency, Precision, and Sustainability
For over a century, the printing industry has been regarded as a relatively mature and stable sector. However, as market demand diversifies and the wave of digitalization accelerates, printing is undergoing a profound transformation. In the era of Industry 4.0, intelligence and automation have become the keywords of competitiveness. From AI (Artificial Intelligence) to IoT (Internet of Things), and the rise of post-press automation, these technologies are quietly reshaping every step of the printing process. Printing is no longer just about reproducing text and images; it is evolving into an era of “smart manufacturing” that is more efficient, precise, and environmentally friendly.
Headline
Trend
Industrial Applications of CNC in the Robotic Arm Industry
CNC technology is an automated system that precisely controls machinery through computer programs, widely applied across various manufacturing sectors. The robotic arm industry encompasses both industrial uses (such as assembly and welding) and service applications (such as latte art or maintenance). In Japan, for instance, people with disabilities can remotely operate robots from home for work. This industry is visibly experiencing rapid growth. According to 2025 market data, the global robotics market is expected to reach USD 50.8 billion, with service robots accounting for USD 40.58 billion, demonstrating strong growth potential. The application of CNC in the robotic arm industry extends beyond component manufacturing to control systems and versatile task execution.
Headline
Trend
From Solar to Wind: The Heart of Green Energy
When discussing the energy transition, attention often falls on the surface area of solar panels, the blades of wind turbines, or the massive structures of nuclear power plants. Yet behind these world-changing energy systems, the critical components that drive solar, wind, and nuclear operations rely heavily on precision-manufactured CNC machines. Often hailed as the “brains of manufacturing,” these machines, with micron-level precision and highly automated capabilities, serve as the invisible engine powering technological breakthroughs and future innovations in the energy sector.
Agree