What Is A CNC Lathe Machine, And Its History Evolution In Machinery
Knowledge

What Is A CNC Lathe Machine, And Its History Evolution In Machinery

The lathe is the earliest working mother machine. Most of the circular parts are processed to make longitudinal or horizontal movements, and the rotating workpiece fixed on the chuck is cut to change its appearance and shape, making it a practical product.
Published: May 13, 2020
What Is A CNC Lathe Machine, And Its History Evolution In Machinery

The range of lathe work is extremely wide, such as outer diameter turning, face turning, taper turning, thread turning, class turning, grooving and cutting, drilling center holes, drilling, boring, embossing, eccentric turning, balls and curved surfaces Turning, etc. all belong to its processing scope.

Evolution of CNC lathe machining

CNC is a Computer Numerical Control (CNC) machine tool. It uses a digital signal operating system to control the process equipment in the production system. Today, most numerical control machine tools use computers to perform arithmetic control. The so-called lathe machining refers to the machining behavior that the workpiece moves in a circular motion and the tool moves in a linear motion. The earliest lathe processing is said to be that ancient humans used ropes to turn wood and then held tools for turning. In the industrial revolution, a large number of metal products were widely needed, and lathe processing became the key to production. Later, after the development of steam engines, the application of belts and gears, all-gear high-speed lathes finally appeared. Until now, CNC lathe processing equipment has gradually replaced traditional lathes, production efficiency has doubled, and parts processing accuracy has also been greatly improved, becoming an important indicator of national modernization.

Lathe processing materials and equipment types

Lathe processing materials include various types of metal hardware grinding, stainless steel grinding, steel, aluminum alloy, tungsten steel grinding, white iron, copper, titanium, molybdenum, metal composite materials, magnetic materials, zirconia, ceramics, silicon crystal, PEEK, engineering plastics, PPS, etc.

Types of lathe equipment:

Ordinary lathe or Engine Lathe is a general-purpose machine tool. It is the predecessor of today's high-speed lathes. It already has the complete functions of lathes. As long as the operator is skilled, the workpieces with low accuracy can be completed, and the price Very cheap.

  1. Automatic Lathe The automatic sequence control, feeder, and discharge mechanism not only have very high processing efficiency but also can operate unmanned for a long time, suitable for small parts.
  2. Vertical lathe machining (Vertical Lathe) The lathe head is placed vertically, the workpiece is easy to load and unload, and the trouble of chip accumulation and deformation is reduced. In recent years, a highly automated inverted lathe has even been developed.
  3. Table Lathe Processing (Bench Lathe) The lathe processing equipment that can be used on the table is suitable for the processing of small parts such as measuring tools, instruments, clocks, and watches.
CNC lathe processing equipment (Computerized Numerical Control Lathe)

In the early numerical control NC lathe processing equipment, it is necessary to drive the data into the hole belt, and then the control unit converts the above data into a signal to facilitate automatic turning processing.

For CNC lathe processing equipment, the personnel enters the data into the computer to generate the G code, and then the CNC controller drives the machine for precision processing.

Computer numerical control CNC (complete computer control) machine tool

From 1960 to 2000, the numerical control system was extended to other metal processing machines. Until the computer microprocessor is applied to numerical control, the working mother machine can not only be directly operated by humans but also can be automatically controlled to greatly improve the function. Such a system is called computer numerical control (CNC). During this period, new, fast, multi-axis machine tools also appeared. In particular, Japan successfully broke the traditional form of the main shaft of the machine tool, moved the main shaft of the machine tool with a spider-like device, and controlled it with a high-speed controller. The CNC machine also makes a part, not only the job of the technician but also the programmers.

The CNC program can be divided into the main program and an auxiliary program (subprogram). Any part of repeated processing can be written with an auxiliary program to simplify the design of the main program.

Character (numerical data) → word → single block → processing program.

Just open the notepad in the Windows operating system to edit the CNC code, and the written CNC program can use the simulation software to simulate the correctness of the tool path.

The CNC program can be divided into the main program and an auxiliary program (subprogram). Any part of repeated processing can be written with an auxiliary program to simplify the design of the main program.

Character (numerical data) → word → single block → processing program. Just open the notepad in the Windows operating system to edit the CNC code, and the written CNC program can use the simulation software to simulate the correctness of the tool path.

CNC automatic lathe processing advantages:

Due to the ideal design of cutting speed and feed, the tool cost is relatively low, and the unit cost can be reduced in a small number of diverse production modes, especially when the shape of the finished product is complex and fine. If the program is well designed, it can be used for machine tools at different times and places. To produce the same product, there is no need to redesign, so reduce the upfront cost and preparation time. "Adaptive control" can maintain the machine tool in the best production conditions and extend the life of the tool.

  • Exemption of much pre-operation time
  • Can reduce inspection costs
  • The operator does not need to possess advanced technology
  • The use of special molds and fixtures can be eliminated, saving processing time
  • Automatic tool change, feeding, etc., with a higher degree of automation.
  • High efficiency, high quality, and high yield.
Advantages of personnel management:

It can reduce labor and personnel costs, machine operation is simple, an operator can operate several machines at the same time. The processing time and unit cost are easy to control and master, so the production plan can be effectively mastered, and the dull material can be reduced. Once the programming is completed, the operation reduces dependence on high-tech operators, thereby eliminating operator errors and improving yield.

Disadvantages of CNC automatic lathe processing:
  • The initial purchase cost of the CNC machine tool is high.
  • Program personnel must have knowledge of processing and operation.
  • The equipment is precise and complex, and the cost of maintenance and repair is high.
  • Rely on programmers, mechanical maintenance professionals. Such personnel training is more difficult than general technicians.
Published by May 13, 2020 Source :jmsgroup Source :junchen

Further reading

You might also be interested in ...

Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Headline
Knowledge
The Power of Color: How the Printing Industry Protects Brand Quality
In the printing industry, color has always been a core element influencing both quality and sensory experience. Whether in packaging, advertising, or publications, color accuracy directly affects consumer perception and trust in a brand. With the rise of digitalization and globalization, companies increasingly demand brand consistency, making color management more than just an aesthetic concern—it is a safeguard for printing quality and brand value. This article explores the importance of color management, the application of ICC color calibration, and Pantone’s role in brand identity, providing a comprehensive overview of the core knowledge and practical value of color management in printing.
Headline
Knowledge
Is Your Paper Box Truly Recyclable? The Secrets of Composite Packaging
Imagine a typical morning, a warm drink in your hands, held in what looks like an eco-friendly paper cup. You think to yourself, "At least it's not plastic. It must be better for the environment." But have you ever wondered how that paper container holds a hot liquid without leaking? Can it really be recycled with ease? The truth is, there are hidden secrets about packaging materials you may not know.
Headline
Knowledge
Soft PE/PP Waste Recycling Technology in the Circular Plastic Economy
Soft polyethylene (PE) and polypropylene (PP) waste are widely used in modern plastic industries, including packaging films, agricultural coverings, garbage bags, and logistics materials. Due to their high usage volume and recycling challenges, the effective recovery and processing of these materials have become a critical aspect of sustainable plastic management.
Headline
Knowledge
Machine Tool Lubrication and Cooling Systems: Components and Technologies
Machine tools are the cornerstone of modern manufacturing, enabling precise cutting, forming, and machining of metals and other materials. During operation, these machines generate significant friction and cutting heat, which, without proper management, can lead to tool wear, workpiece deformation, and reduced machining accuracy. Lubrication and cooling systems are essential for mitigating these issues, with lubrication reducing friction and wear, and cooling dissipating heat to maintain thermal stability. Together, these systems enhance machining efficiency, extend equipment lifespan, and improve surface quality. Research indicates that effective lubrication and cooling can boost machining performance by up to 30%. This article explores the critical components—lubrication pumps, pipes, coolant pumps, and filters—while highlighting advanced techniques and future trends.
Headline
Knowledge
Cutting Tools and Clamping Systems in Machine Tools: The Core of Precision and Efficiency
In the machine tool industry,while spindles and drive systems form the backbone of machine tools, cutting tools and clamping systems directly dictate machining precision and efficiency.Cutting tools perform the material removal, while clamping systems ensure the stable positioning of both tools and workpieces. Together, they determine machining accuracy, efficiency, and surface quality.
Headline
Knowledge
Electrical Discharge Machining (EDM) Technology and Its Value in the Aerospace Industry
In the aerospace sector, the design and manufacturing of components are constantly challenged by extreme conditions: high temperature, high pressure, high speed, and prolonged operation. Traditional machining methods are increasingly unable to meet the requirements of next-generation materials and complex geometries. With the widespread adoption of nickel-based superalloys, cobalt-based alloys, and ceramic matrix composites, the limitations of cutting tools in terms of efficiency and tool life have become more evident. At this stage, Electrical Discharge Machining (EDM), with its ability to process high-hardness materials and intricate shapes, has emerged as an indispensable process in aerospace manufacturing.
Headline
Knowledge
Differences in the Application of Textile Materials in Apparel, Medical, and Industrial Fields
Textile materials come in a wide variety, with significant differences in their properties. Different applications have distinct requirements for these properties. For example, in the apparel sector, comfort, aesthetics, and a soft touch are top priorities; in the medical field, hygiene, protection, and resistance to high temperatures or chemicals are emphasized; while in the industrial sector, durability, strength, and special functionalities such as flame retardancy or conductivity are critical. This article aims to compare the application differences of textile materials in the apparel, medical, and industrial fields, exploring selection principles and providing a reference for industry and research.
Agree