What Should We Pay Attention to When Processing Titanium Alloys?
Knowledge

What Should We Pay Attention to When Processing Titanium Alloys?

Titanium alloys are widely used in aerospace, chemical, marine, and automotive industries due to their excellent strength-to-weight ratio, corrosion resistance, and ability to maintain strength at high temperatures. However, the disadvantages of titanium alloys are poor thermal conductivity and strong reactivity with tool materials. Their high strength, and low elastic modulus make them difficult to cut materials.
Published: Mar 21, 2022
What Should We Pay Attention to When Processing Titanium Alloys?

Features of titanium alloy machining:

With excellent comprehensive mechanical properties, low density, and good corrosion resistance, titanium alloys are strategic metal materials that can be used in the cutting tool industry for the development of new space age products.

The machining environment required for titanium alloys:

Titanium alloys do not require lubrication during dry machining, however high-pressure coolant processing is still often used to achieve a better cooling effect. The high pressure forces the coolant to penetrate the contact area between the tool-workpiece and the tool. Indirect cooling, general submersion, closed groove processing, and thermal strengthening processing of titanium alloys at a high temperature can also be used to reduce the cutting force volume of coolant required, making it more environmentally friendly by minimizing the amount of lubrication in the processing environment. 

  1. Dry processing environment:
    A dry processing environment is where no lubrication is required during machining. The advantages are a cleaner working environment, cleaner parts, no waste generation, reduced machining costs, and reduced chip recycling costs due to the absence of residual oil.
  2. High-pressure coolant environment:
    The high-pressure coolant can penetrate the contact area between the tool-workpiece and the tool chip, to achieve a better cooling effect. This reduces tool wear by lubricating the contact area. The high-pressure coolant jet forms a hydraulic barrier between the tool and the workpiece which penetrates the interface for faster cooling, even at high processing speeds. The coolant jet also helps in removing chips from the cutting area.
  3. Low-temperature environment under low-temperature lubricant:
    Low-temperature lubricants such as liquid nitrogen (LN₂), carbon dioxide (CO₂), or other low-temperature lubricants, are injected between the chip and the tool interface to cool the cutting area. The application methods of low-temperature cooling include pre-cooling of the workpiece, indirect cooling of the tool blade, general submersion, closed groove processing, etc. LN₂ absorbs heat, evaporates quickly, and forms a fluid air cushion between the chip and the blade surface, which acts as a lubricant. LN₂ is non-toxic, inexpensive, and clean. It effectively removes heat from the cutting zone and minimizes tool wear. It can also introduce compressive residual stress on the machined surface and improve its fatigue life.
  4. Thermally strengthened processing environment:
    In this environment, the material being processed is heated to high temperatures, thereby reducing the strength of the material. The flow stress and strain hardening rate of the material decreases with increasing temperature. The purpose of this method is to increase material removal rates without sacrificing tool life. The temperature increase of the workpiece is achieved by laser, plasma, gas, or induction heating. Therefore, machining titanium alloys at high temperatures can reduce cutting forces, eliminate coolant, and make it more environmentally friendly. In addition, it reduces vibrations in the tool-work-mechanical system due to segmented machining. 
  5. Minimum Lubrication Levels for Processing Environments:
    A mixture of oil and compressed air is provided between the tooling interfaces in the form of a mist. The small oil droplets carried by the air fly directly into the working area, providing the required cooling and lubrication. Mist is created through the process of atomization, which converts a bulk liquid into a spray or mist through a nozzle. Spray lubrication significantly reduces the temperature in the cutting zone, thereby increasing tool life.

Classification of titanium alloys:

According to the characteristics of the structure after annealing, it can be divided into α, α+β, β type titanium alloys.

  1. α-type titanium alloy has low density:
    It has good thermal strength and thermal stability, good welding performance, and good performance at room temperature, ultra-low temperature, and high temperature, but cannot be strengthened by heat treatment. TiAl still has high strength at 600 °C and has good performance in creep properties, thermal stability, fatigue properties, and fracture toughness. It is commonly used in the manufacture of jet engine turbine disks and blades.
  2. α+β type titanium alloy duplex alloy:
    The structure is stable, and the toughness, plasticity, and high-temperature deformation properties are improved with the increase of β-phase stabilizing elements. It has good hot press workability and can be quenched and aged to strengthen the alloy. The strength after heat treatment is about 50% to 100% higher than that in the annealed state. It has high-temperature resistance and can work for a long time at a temperature of 400~500°C, but its thermal stability is inferior to that of α titanium alloy. Among β-type titanium alloys, Ti-6Al-4V is the most used of all titanium alloys, and its output in the United States accounts for more than half of titanium alloy output. With its excellent comprehensive mechanical properties and machinability, it is widely used in the manufacture of aerospace parts, such as the application of titanium alloy aero-engine impellers.
  3. β type titanium alloys. Beta titanium alloy is a single-phase alloy composed of a beta phase solid solution:
    Its strength at room temperature is high, and its cold working and cold forming processing abilities are strong. It has high strength without heat treatment. After quenching and aging, the strength of the alloy is further strengthened, and the room temperature strength can reach 1372~1666MPa. However, its thermal stability is poor so should not be used at high temperatures.

Features of titanium alloy machining:

  • Titanium alloy has poor thermal conductivity so is a poor thermal conductor material. Because its thermal conductivity is low, the high heat generated during processing cannot be effectively diffused. The contact length between the cutting edge and the chip of the tool is short so that a large amount of heat is accumulated on the cutting edge. The temperature rises sharply, resulting in a decrease in the red hardness of the cutting edge, softening of the cutting edge, and accelerated tool wear.
  • The affinity of titanium alloy is large, resulting in serious sticking to the cutting tool during processing. This increases friction between the tool body and the workpiece, creating a lot of heat, which reduces the service life of the tool.
  • With the increase of working temperature, chemical activity increases, making alloys easy to react with O, N, CO, CO₂, H₂O, etc. in the air. As the content of interstitial elements O and N increases, the surface of the workpiece is oxidized and hardened, making it difficult to process. The required cutting force of the tool increases, increasing the stress on the tooltip. The increased friction between the rake face and flank of the tool, and the workpiece results in rapid wear or collapse of the blade.
  • Because the deformation coefficient of titanium alloy is also low, and the contact area between the tool and the chip during cutting is small. The high friction between the chip and the rake face will also increases the cutting temperature and accelerate the wear of the rake face of the tool.
  • Because the deformation coefficient of titanium alloy is also low, and the contact area between the tool and the chip during cutting is small. The high friction between the chip and the rake face will also increases the cutting temperature and accelerate the wear of the rake face of the tool.
  • Different processing methods give different processing difficulties for titanium alloys. Difficulty of machining processes, ranked from easy to difficult are: turning, milling, drilling, grinding, and drilling small diameter deep holes.

Tool material for titanium alloy machining:

The high cost of titanium alloy processing is the main reason hindering its widespread use. Seeking a high-efficiency and low-cost processing method has become a hot topic in today's titanium alloy research. The selection of materials has a great influence on the processing of titanium alloys. Ideal tool materials for titanium alloys must have the combined properties of high thermal hardness, good toughness, wear resistance, high thermal conductivity, and low chemical activity. The tool should also have good impact resistance when milling. The main tool materials used to process titanium alloys in production today are cemented carbide, polycrystalline diamond (PCD), polycrystalline cubic boron nitride (PCBN), etc. Cemented carbide and PCD tools are considered to be ideal for machining titanium alloys.

Cutting principles of titanium alloy cutting:

  1. Cutting speed:
    Cutting speed affects the temperature of the cutting edge, which can lead to overheating of the cutting edge, causing serious cutting-edge bonding and wear. Therefore, to ensure greater tool durability, an appropriate cutting speed should be selected to reduce costs and ensure processing quality.
  2. Infeed depth and pass amount:
    Changing of the number of passes has little effect on the temperature, so it is reasonable to reduce the cutting depth and increase the number of passes. However, to avoid the hard oxide layer and subcutaneous pore layer, the depth of the cut should reach the unoxidized metal layer of the substrate. This will improve the life of the tool.
  3. Tool geometry:
    When cutting titanium alloys, the selection of geometric parameters such as rake angle and relief angle suitable for the processing method and the proper treatment of the tooltip will have an important impact on the cutting efficiency and tool life. When turning, to improve the heat dissipation conditions and strengthen the cutting edge, the rake angle is generally 5°~9°. To overcome the friction caused by spring-back, the flank face of the cutter body is generally 10°~15°. When drilling, by shortening the length of the drill bit, increasing the thickness of the drill core and the amount of guide cone, the durability of the drill bit can be improved several times.
  4.  Clamping force:
     Titanium alloy is easy to deform so the clamping force should not be too large. Especially     during the finishing process, certain auxiliary support should be selected.
  5. Cutting fluid:
    Cutting fluid is an indispensable process lubricant in titanium alloy processing, however cutting fluids containing chlorine or other halogen elements and sulfur can adversely affect the mechanical properties of titanium alloys.

Due to its excellent properties, the proportion of titanium alloys used in the aerospace industry is increasing year by year. However, due to the high cost of cutting and low processing efficiency, current applications are still greatly limited. With the continuous improvement of tool material research and development and processing technology, the processing efficiency of titanium alloy will be greatly improved, and the processing cost will gradually decrease. This will promote wider applications of titanium alloys in shipbuilding, automobile manufacturing, electronics, marine development, the chemical industry, and other fields.

Published by Mar 21, 2022 Source :tool

Further reading

You might also be interested in ...

Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Headline
Knowledge
The Power of Color: How the Printing Industry Protects Brand Quality
In the printing industry, color has always been a core element influencing both quality and sensory experience. Whether in packaging, advertising, or publications, color accuracy directly affects consumer perception and trust in a brand. With the rise of digitalization and globalization, companies increasingly demand brand consistency, making color management more than just an aesthetic concern—it is a safeguard for printing quality and brand value. This article explores the importance of color management, the application of ICC color calibration, and Pantone’s role in brand identity, providing a comprehensive overview of the core knowledge and practical value of color management in printing.
Agree