What is DevOps? - An IT Paradigm for Agile Development and Efficient Maintenance

What is DevOps? - An IT Paradigm for Agile Development and Efficient Maintenance

DevOps is an evolving philosophy and architecture designed to encourage faster and better application development and faster release of new or revised software features or products to customers.
Published: Mar 23, 2022
What is DevOps? - An IT Paradigm for Agile Development and Efficient Maintenance

What is DevOps?

DevOps is a combination of development and operation. Development refers to software development, and operation mainly refers to technical operation & maintenance. It can be regarded as the intersection of software development, technical operation and maintenance, and quality assurance.

DevOps practices promote smoother, continuous communication, collaboration, integration, visibility, and transparency between application development teams and their IT operations partners. The DevOps lifecycle covers many phases: from initial software planning, through the code, build, test, and release phases, to deployment, operations, and continuous monitoring. They maintain a cycle of continuous improvement, development, testing, and deployment.

DevOps goals can be divided into four categories: Culture, Automation, Measure, and Share (CAMS). These tools make development and operations workflows more streamlined and collaborative, automating time-consuming, manual, or static work that previously involved integration, development, testing, deployment, or monitoring.

Why is DevOps important?

In addition to striving to break down communication and collaboration barriers between development and IT operations teams, a core value of DevOps is customer satisfaction and faster time to value. DevOps is designed to drive enterprise innovation and continuous process improvement.

DevOps practices encourage faster, better, and more secure delivery of business value to an organization's end customers. This value may come in the form of more frequent product releases, features, or updates. This may involve the speed at which customers can receive product releases or new features, all of which must be of an appropriate level of quality and security. Alternatively, it might focus on the speed at which issues or bugs are identified, and then resolved and republished. Underlying infrastructure also supports DevOps to provide smooth performance, availability, and software reliability. DevOps facilitates development and testing of software before it is released for production.

DevOps development and maintenance toolchain:

Followers of DevOps practices typically use some easy-to-use DevOps tools in their DevOps toolchains. The goal of these tools is to further simplify, shorten and automate all stages of the software delivery workflow. Promotes core DevOps principles such as automation, collaboration, and integration between development and operations teams.

  • Planning: This phase helps define business value and requirements, and assists in tracking known issues and performing project management.
  • Code: This phase involves software design and the creation of software code.
  •  Build: During this phase software builds and versions and automated tools will be managed. It will be used to assist in compiling and packaging the code for future release to the production environment. The source code repository or package repository used also encapsulates the infrastructure required for product release.
  • Testing: This phase includes continuous testing to ensure optimal code quality.
  • Deployment: This phase can include tools to help manage, coordinate, schedule, and automate the release of the product to the production environment.
  • Action: This phase manages the software during production.
  • Oversight: This phase includes identifying and collecting information about specific software version issues in production.

DevOps development and maintenance practices:

  • Continuous Development: This practice covers the planning and coding phases of the DevOps lifecycle.
  • Continuous testing: This practice includes pre-scheduled continuous automated code testing while the application's code is being written or updated. These types of tests can speed up the delivery of code to production.
  • Continuous Integration (CI): This practice combines configuration management (CM) tools and other testing and development tools to track how much of the code being developed is ready for production. This involves providing quick feedback between testing and development to quickly identify and resolve code issues.
  •   Continuous Delivery: This practice automatically delivers code changes to a pre-production or staging environment after testing. Employees can then decide whether or not to roll out such code changes to the production environment.
  • Continuous Deployment (CD): Similar to Continuous Delivery, this practice automates the release of new or changed code to the production environment. Companies that perform continuous deployment can release code or feature changes several times a day.
  • Continuous Monitoring: This practice involves continuous monitoring of the code in operation and the underlying infrastructure supporting that code. The feedback loop that reports bugs or issues then goes back to development.
  • Infrastructure as Code: This practice can be used in various DevOps phases of DevOps to automate the provisioning of infrastructure resources required for software releases. Developers can add infrastructure code from their existing development tools. This practice also allows operations teams to monitor the environmental configuration, track changes, and simplify configuration recovery.
Advantages of DevOps:
  • Deliver products faster and better
  • Solve problems faster and reduce complexity
  • Higher scalability and availability
  • More stable working environment
  • Better resource utilization
  • Better automation
  • Get a clearer grasp of system outcomes
  • Higher level of innovation

DevOps implementation process and method:

  1. Agile Software Development
    A software development method that emphasizes the close collaboration of business, design, and development teams. It organizes flexible cross-functional teams through effective communication, frequent delivery of new software versions, and writing code that can respond well to changes in demand. Waterfall software development is a top-down development program like a waterfall, from product requirement design to maintenance and update. Due to the strict and fixed division of each stage, the release of the version takes a long time and it is difficult to make changes in the process, and the development risk is high. The agile development process is faster and more flexible in terms of adjustment and modification.
  2. Automation
    Automation is a very important part of the DevOps concept, and focuses on development process automation and infrastructure automation.
    • Development Process Automation - Development process automation is designed to speed up software delivery, including deployment, monitoring, and testing of server management processes. Automated deployment can reduce the possibility of errors in manual operations and improve software security.
    • Infrastructure Automation - The most common practice is infrastructure as code, where code is used to build and manage infrastructure. Engineers can treat infrastructure like application code, making processes such as deployments and updates more efficient, while improving security.
  3. Continuous Integration/Continuous Delivery (CI/CD)
    Since most companies develop a software product in collaboration with multiple software engineers, it is necessary to continuously integrate new code changes from each developer into a central database. Continuous delivery is based on continuous integration. After automatic construction and automatic testing, the code that has passed the standardized test program is ready to be deployed to the production environment. Consistent and fast delivery increases the speed of software updates and fixes.
  4. Microservice
    Microservice is a design method of software development architecture that disassembles complex large-scale systems, and creates multiple small and independent projects, by communicating through well-defined APIs. Usually, the establishment of microservices is based on service functions.
  5. Monitoring and Analysis
    Teams that implement DevOps will continue to monitor, record, and analyze user reactions and feedback to software products. They establish trackable and meaningful alert indicators to help them understand the impact of changes on user experience and make improvements to these products. As infrastructure and applications are updated more and more frequently, setting up effective warning indicators and more proactive monitoring systems will improve the reliability of software delivery and the efficiency of problem response.

Communication and cooperation is the essential core of team organizations. By establishing a corporate culture of providing transparent information and close cooperation, the development, operation, and client teams can establish common goals and effective communication and cooperation methods. Through cooperation, automation, and monitoring, they can increase efficiency, improve the quality of software services, and speed up new releases and updates.

Published by Mar 23, 2022 Source :cakeresume, Source :netapp

Further reading

You might also be interested in ...

What is an Oscilloscope?
An oscilloscope is a diagnostic instrument that graphs electrical signals. Whether it is a simple or complex product, it includes electronic components, and its design, verification, and the debugging process require an oscilloscope to analyze the many electrical signals that make the product wake up.
What is Heat-assisted Magnetic Technology?
Heat-Assisted Magnetic Recording (HAMR) is a technology that uses laser heat to first heat highly stable media to assist in the magnetic recording of data.
Key Components of Automotive Semiconductors: ECU, MCU and Sensor
The automotive semiconductor market continues to be optimistic. At present, the main automotive semiconductor chips include microcontrollers (MCU), power management ICs, digital signal controllers (DSP), sensors, power semiconductors, discrete components, micro-electromechanical (MEMS), memory, customized application IC (ASIC), etc. The automotive chip supply chain is complex and long. After the shortage storm in 2021, automakers began to shorten the semiconductor supply chain, hoping to shorten the long chain. Some automakers even have the idea of developing and designing automotive semiconductors by themselves.
What is Sheet Metal Processing?
"Sheet metal" in sheet metal processing refers to thin metal plates, which can be processed by stretching, stamping, bending, etc., and the thickness is usually less than 6mm. Common materials include iron plates (black steel SPHC, cold-rolled steel SPCC, galvanized steel SECC), hot-dip galvanized steel sheet SGCC), stainless steel (SUS304, SUS316), aluminum (AL5052), copper, etc. Sheet metal processing is different from other processing technologies. It includes many different steps, such as: laser cutting, NCT punching, cutting, folding, welding, riveting, etc. The specific products produced are usually support frames, equipment covers, internal parts and some functional objects, such as electronic control panels, medical equipment covers, airport automatic clearance machine covers or parts, snapshot cabinets, food processing equipment covers and parts.
What is an Industrial Cooler?
A cooler is a device used for cooling during the manufacturing process.
How to Choose a Suitable Uninterruptible Power Supply System?
Uninterruptible Power Supply (UPS) is a device that continuously provides backup AC power for electrical load devices and maintains the normal operation of electrical appliances when the power grid is abnormal. Uninterruptible power supply systems can be divided into online, offline, and line interactive. The power requirements of each field are different. How to choose a suitable one?
What is Anodizing?
Anodizing is a treatment used to enhance the surface properties of metals. It can improve the appearance, durability, conductivity or other properties of a metal surface and help protect it from wear and corrosion. In addition, it can also be used to make different shaped materials, such as rubber rings, pressure-type parts or trimming cutting tools. Therefore, anodizing is a common metalworking method.
What is A Punch? Punch Principle, Type, Material Introduction
Punching machine, also known as stamping machine, is a forming process technology. There are many types of it. Due to different structural principles, the price and processing effect will be different accordingly, but they all have something in common in terms of structural composition. With the rapid development of the stamping industry, competition in all walks of life is increasing, and it is applied to various industries, such as aerospace, education, auto parts, diving equipment and so on. The following will introduce the punch structure, type and material.
Introduction to the Different Types of Welding
Welding is a manufacturing process and technology that uses heat, high temperature or high pressure to join metal or other thermoplastic materials such as plastics. According to the state of the metal in the welding process and the characteristics of the process, the welding methods can be divided into three categories: welding, pressure welding and braze welding.
What is Worm Gear?
A worm gear is a gear consisting of a shaft with a helical thread that meshes with and drives the gear.
What is Chip Formation?
In the chip formation process, materials are cut through mechanical means by using tools like milling cutters, saws, and lathes. It is an integral part of the engineering of developing machines and cutting tools.
What Exactly is a Boring Machine?
A boring machine, device for producing smooth and accurate holes in a workpiece by enlarging existing holes with a bore. A single-point tool is attached to a rotating spindle within a boring head. They can dig through anything from hard rock, soft soil to sand.