What is Pad Printing Technology?
Knowledge

What is Pad Printing Technology?

Pad printing refers to a printing method that can print an image onto objects with irregular surface. An image is first photo-burned into the substrate of a copper or steel plate. Ink is placed onto the image on the plate, and the image is transferred onto a silicone rubber printing head. The printing head then transfers the ink to the item to be printed completing the printing transfer process.
Published: May 03, 2022
What is Pad Printing Technology?

What is Pad Printing Technology?

Pad printing technology can print text, graphics, and images onto the surface of irregular objects. For example, text and patterns can be printed onto the surface of mobile phones, computer keyboards, instruments, meters, and many other electronic products.

The Principle of Pad Printing Technology:

The pad printing process is simple. An image is photo-engraved onto a steel (or copper, thermoplastic) plate, and a curved printing head made of silicone rubber material is pressed onto the image. The ink image is transferred from the plate onto the surface of the pad printing head, which is then pressed onto the surface to be printed.

The Development of the Pad Printing Process:

The pad printing process is a special printing technology developed in the 1980s. Because it can print on products with small areas and concave and convex surfaces, it has resolved some of the shortcomings of the screen-printing process, and has been developed rapidly in recent years. With the opening of the China market in the early 1990s, more and more enterprises in traditional industries such electronics, plastics, gifts, and toys, replaced screen printing with pad printing as the main method used for decoration and logo printing.

Application Areas of Pad Printing Technology:

Pad printing is widely used for printing on toys, pens, electronics, electrical appliances, plastics, leather, metal, glass, gifts, hardware, and other products.

The ability of the transfer head to absorb ink and factors influencing printing quality:
  1. The shape of the transfer head: The basic shape of the transfer head is usually round, rectangular, or square. These shapes are suitable for first rolling the surface of the transfer head across the pattern etched on the image plate, and then rolling the transfer head across the surface of the object to be printed. The size and shape of the pattern to be printed, and the amount of pressure to be used during printing, determine the choice of properties for the transfer head to be used.
  2. Transfer head material properties.
  3. The hardness of the transfer head: The harder the transfer head, the better the ink transfer effect. Hardness can be varied by changing the amount of other materials added to the silicone rubber used for making the head.
  4. Surface condition of the transfer head: Ideally, the surface of the transfer head is very smooth and matt; carefully wiping the transfer head with a solvent-saturated gauze can produce good results. If the transfer head shows signs of wear, the transfer head should be replaced, taking care not to damage the surface of the transfer head.

How to Choose Ink?

Silicone transfer head printing sheet requires ink with high pigment content, fast-drying resin, and fast solvent evaporation. The ability of the ink to become tacky quickly will determine whether the ink can be effectively transferred to the surface of the substrate. At the same time, to adjust the printability and performance of the ink, in addition to adding solvents and catalysts, it is also possible to use any additives, such as viscosity modifiers, antistatic agents, rheology agents, etc. However, the use of additives will have a great impact on the printing performance of the ink, so be careful when using them.

Due to the wide range of materials that can be printed using this process, a variety of inks are available. Silicone transfer head printing ink is expensive due to the small amount needed for printing. Screen-printing ink is not suitable for Pad printing because it does not dry fast enough and has a pigment content of only 5%.

  • One-component ink:
    One-component inks are dried by solvent evaporation, and catalysts are not necessarily added to this ink. One-component inks are available in glossy and non-glossy types, and are mainly used for printing on plastic substrates.
  • Two-component ink (chemically reactive ink):
    Before printing, a catalyst is added to the ink. The catalyst reacts with the resin in the ink to initiate drying of the ink through a polymerization reaction. When two-component inks are used in pad printing, it is necessary to carefully maintain the correct ratio of catalyst to ink, and both are usually measured by weight. Improper mixing ratios of ink and catalyst can lead to printed product defects such as uneven ink adhesion and insufficient durability of the printed image.
  • Bake dry ink:
    Bake-drying inks can be divided into two types; one type is standard two-component ink with additional catalysts; the other is specially formulated for substrates such as glass, ceramics, and metals. Bake-drying inks must be warmed and dried at a certain temperature. When using this ink, the drying time should be calculated. The higher the temperature, the shorter the drying time. However, if the drying temperature is too high, the ink film will become brittle, so the ink should be dried at a temperature that will maintain the flexibility of the ink.
  • Oxidizing ink:
    Oxidating ink absorbs oxygen from the surrounding environment and polymerizes to form an ink film without the need for a catalyst. Typical applications for oxidizing inks are flexible packaging substrates and substrates of synthetic materials such as rubber products or keyboards. Due to the slow drying speed and long time required for oxidation, the use of oxidating ink is limited.
  • UV pad printing ink:
    UV inks are rapidly cured and dried using UV energy. When UV light penetrates the ink, the photosensitive molecules in the ink interact with neighboring molecules to harden. The process is completed in seconds or milliseconds and gives off no volatile fumes. The hardened ink has strong friction resistance, is resistant to acid and alkali, and is environmentally friendly.
Pad printing workflow:
  • Ink is spread evenly over the steel plate with a squeegee.
  • The print head is pushed down onto the steel plate to transfer the ink pattern from the steel plate to the print head.
  • The print head is pushed down onto the item to be printed, transferring the image to the item.
  • The ink is allowed to dry and the item is tested and packaged.

What is the Difference Between Pad Printing and Silk Screen Printing?

  1. While screen-printing can only be used for printing on flat surfaces, pad printing can print on both curved surfaces and flat surfaces. One major advantage of pad printing is that it is suitable for printing large and small products, as well as a variety of strange-shaped products. One disadvantage is that the ink layer is relatively thin.
  2. Silkscreen printing prints the pattern on the substrate by passing ink through a screen that has the image set into it. An advantages of silk screen printing is that it can be used for printing on a much larger plane. The disadvantage is that it is not suitable for special-shaped products, and the ink layer is relatively thick.

Features of Pad Printing Technology:

  • Process cost: Single piece cost, low labor cost, because most of the processes are completed by machining.
  • Application products: Used for surface printing of 3C electronic products, vehicles, interiors, sports equipment, etc.
  • The output is suitable: Single pieces to large batches are available, a single piece can be simply made into ordinary steel plate printing, and large batches can be done by machine.
  • Quality: Sharp print details are achieved, even on uneven surfaces.
  • Speed: A single printing time is about 1-5 seconds, and can be completed by machine.
Published by May 03, 2022 Source :read01, Source :read01

Further reading

You might also be interested in ...

Headline
Knowledge
A Complete Guide to Selecting the Ideal Paper Cups for Hot Beverages
This guide provides a detailed overview of how to choose the best paper cups for hot beverages. It explores the different types of cups—single-wall, double-wall, insulated, and eco-friendly—and explains their unique features and ideal use cases. Key factors to consider include beverage temperature, insulation needs, cup size and lid compatibility, environmental impact, and safety standards. The article also outlines best practices for both consumers and businesses to ensure safe use and responsible disposal. Ultimately, selecting the right paper cup depends on balancing functionality, comfort, sustainability, and cost.
Headline
Knowledge
Understanding the Difference Between Reverse Osmosis and Traditional Water Filters
An in-depth comparison between reverse osmosis (RO) and traditional water filters, two widely used methods for purifying drinking water. It outlines how RO uses a semi-permeable membrane to remove dissolved salts, heavy metals, and microorganisms, making it ideal for areas with highly contaminated water. In contrast, traditional filters rely on physical and chemical filtration - often using activated carbon - to improve taste and remove larger particles. While RO systems offer superior contaminant removal, they come with higher costs and water usage. Traditional filters are more affordable and environmentally friendly but less effective against microscopic impurities. The article concludes that the best choice depends on specific water quality needs, and in some cases, combining both systems can offer the most comprehensive solution.
Headline
Knowledge
A Comprehensive Guide to Selecting Cutting Techniques in Plastic Bag Production
This article provides a detailed comparison of hot and cold cutting methods used in plastic bag manufacturing, emphasizing how the choice impacts production efficiency, edge sealing, and material compatibility. Hot cutting uses heated blades to cut and seal simultaneously, making it ideal for leak-proof and high-speed production, while cold cutting offers precise, sharp cuts without heat damage, suitable for a variety of bag types. The selection depends on factors such as material type, production requirements, and environmental considerations. Understanding the strengths and limitations of each method helps manufacturers optimize their processes and meet evolving industry demands.
Headline
Knowledge
Exploring Ventilator-Associated Pneumonia (VAP) and Its Effects on ICU Patients
Ventilator-associated pneumonia (VAP) is a significant healthcare challenge in intensive care units, typically occurring in patients who have undergone mechanical ventilation for at least 48 hours. It is associated with high morbidity, mortality, and healthcare costs. VAP develops due to respiratory tract colonization by pathogens, facilitated by invasive devices like endotracheal tubes. Common bacteria include Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. Risk factors range from prolonged ventilation to prior antibiotic use and underlying health issues. Diagnosing VAP is difficult due to overlapping symptoms with other lung conditions and the absence of standardized criteria, often leading to antibiotic overuse. Preventive strategies—such as ventilator care bundles, elevating the head of the bed, maintaining oral hygiene, and staff training—are critical to reducing its incidence. While progress has been made, ongoing research and consistent application of evidence-based practices are essential to improve outcomes and lower the burden of VAP in ICU settings.
Headline
Knowledge
Popping Boba: A Comprehensive Exploration
Popping boba, also known as bursting boba or popping pearls, is a fascinating and popular addition to the world of beverages and desserts. These small, colorful spheres are known for their unique texture and the burst of flavor they provide when consumed. This article delves into the intricacies of popping boba, exploring its composition, production process, popularity, and culinary applications. By examining various sources, this report aims to provide a comprehensive understanding of popping boba, highlighting its significance in contemporary food culture.
Headline
Knowledge
Nylon and Sustainability: Exploring Greener Alternatives for the Future
Nylon has been a widely used synthetic material since the early 1900s, valued for its strength, flexibility, and resilience. From fashion to industrial use, it’s found in countless products. But as sustainability becomes a global priority, nylon’s environmental impact has come under greater scrutiny. This article takes a closer look at how nylon is made, its environmental challenges, and the more sustainable options now available.
Headline
Knowledge
EPE Pearl Cotton Recycling Solution: A Comprehensive Overview
This article examines the recycling of Expanded Polyethylene (EPE) Pearl Cotton—a lightweight, shock-absorbing, and moisture-resistant packaging material. While EPE offers many benefits, its bulky form and high transportation costs make recycling difficult. However, advancements in recycling technologies and increasing environmental awareness are driving the development of more effective solutions. The report explores current challenges, emerging recycling methods, and the future potential of EPE recycling.
Headline
Knowledge
Are Compatible Toner Cartridges a Smart Choice? A Comprehensive Analysis
Toner cartridges play a crucial role in both the performance and cost-effectiveness of printing. Among the available options, compatible toner cartridges—third-party products made to function with branded printers—have become a widely used alternative to Original Equipment Manufacturer (OEM) cartridges. This report examines the advantages and disadvantages of compatible cartridges, considering factors such as cost, environmental impact, print quality, and potential risks. By drawing on diverse sources, it provides a balanced evaluation of their suitability for personal and business use.
Headline
Knowledge
Pneumatic Power Tools: Reliable, High-Performance Solutions for Industrial Applications
Pneumatic power tools, commonly known as air tools, are widely used in industrial, automotive, and construction settings due to their efficiency, durability, and power. These tools operate using compressed air, making them a lightweight and high-powered alternative to electric or battery-operated tools. Pneumatic power tools consistently perform well, even under the most demanding conditions. They come in various forms, including impact wrenches, pneumatic drills, sanders, grinders, ratchets, air hammers, chisels, paint sprayers, nail guns, and staplers.
Headline
Knowledge
Introducing the Vise Grip: A Tool of Precision and Power
In 1921, in the quiet workshop of a small-town Nebraska blacksmith, William S. Petersen, a Danish immigrant, invented an ingenious tool that forever changed the landscape of hand tools. He created a new type of pliers with a vise-like grip that could lock onto his work. The Vise-Grip's unique ability to securely latch onto any object with unparalleled precision and strength not only made it a tool but a true extension of the craftsman's hand. This provided an adjustable, locking grip for a wide range of applications.
Headline
Knowledge
Adjustable Wrenches and Pipe Wrenches: Essential Tools for Plumbing and Maintenance
Adjustable wrenches and pipe wrenches have long been recognized as effective solutions for mechanical repairs, plumbing, and construction. Due to their ability to adjust jaw width, they are extremely versatile, allowing a single wrench to fit various sizes of nuts, bolts, and pipes. Their practicality and durability have made them indispensable tools for both professionals and DIY enthusiasts. Each type of wrench serves a unique function and offers distinct benefits.
Headline
Knowledge
RO Filter System Quick Fit Connectors: A Reliable and Efficient Solution
Quick fit connectors have become a preferred solution for connecting tubing in reverse osmosis (RO) filter systems due to their ease of use, reliability, and efficiency. Traditional threaded and compression fittings often require tools and careful handling to ensure a secure and leak-free connection. Quick fit connectors, however, offer a tool-free, push-to-connect mechanism that ensures a tight seal in seconds. Their widespread adoption in RO filtration and other water treatment applications highlights their effectiveness in enhancing system performance and installation convenience.
Agree