Introduction to the Different Types of Welding
Knowledge

Introduction to the Different Types of Welding

Welding is a manufacturing process and technology that uses heat, high temperature or high pressure to join metal or other thermoplastic materials such as plastics. According to the state of the metal in the welding process and the characteristics of the process, the welding methods can be divided into three categories: welding, pressure welding and braze welding.
Published: Jan 04, 2023
Introduction to the Different Types of Welding

Welding

The workpieces to be joined are heated to partially melt to form a molten pool, and then joined after the molten pool is cooled and solidified. If necessary, fillers can be added to assist.

  1. Laser welding
  2. Laser welding uses the heat generated by the focused laser beam as the energy source to bombard the workpiece for welding. It can weld various metal materials and non-metal materials such as carbon steel, silicon steel, aluminum and titanium and their alloys, tungsten, molybdenum and other refractory metals and dissimilar metals, as well as ceramics, glass and plastics. At present, it is mainly used in electronic instruments, aviation, aerospace, nuclear reactors and other fields. Laser welding has the following characteristics:

  • The energy density of the laser beam is high, the heating process is extremely short, the solder joints are small, the heat-affected zone is narrow, the welding deformation is small, and the dimensional accuracy of the weldment is high.
  • It can weld materials that are difficult to weld by conventional welding methods, such as welding refractory metals such as tungsten, molybdenum, tantalum, and zirconium.
  • Non-ferrous metals can be welded in air without additional shielding gas.
  • The equipment is complicated and the cost is high.

  • Gas welding
  • Gas welding is mainly used in the welding of thin steel plates, low melting point materials (non-ferrous metals and their alloys), cast iron parts and hard alloy tools, as well as repair welding of worn and scrapped parts, flame correction of component deformation, etc.

  • Arc welding
  • Arc welding can be divided into manual arc welding and submerged arc welding.
    • Manual arc welding can perform multi-position welding such as flat welding, vertical welding, horizontal welding and overhead welding. In addition, because the arc welding equipment is portable and flexible in handling, welding operations can be performed in any place with power supply. It is suitable for welding of various metal materials, various thicknesses and various structural shapes.
    • Submerged arc welding is generally only suitable for flat welding positions, and is not suitable for welding thin plates with a thickness less than 1mm. Due to the deep penetration of submerged arc welding, high productivity and high degree of mechanized operation, it is suitable for welding long welds of medium and thick plate structures. The materials that can be welded by submerged arc welding have developed from carbon structural steel to low alloy structural steel, stainless steel, heat-resistant steel, etc., as well as certain non-ferrous metals, such as nickel-based alloys, titanium alloys, and copper alloys.

  • Gas electric welding
  • Arc welding that uses external gas as the arc medium and protects the arc and welding area is called gas shielded arc welding, or gas electric welding for short. Gas electric welding is usually divided into non-melting electrode (tungsten electrode) inert gas shielded welding and melting electrode gas shielded welding, oxidizing mixed gas shielded welding, CO2 gas shielded welding and tubular wire gas shielded welding according to whether the electrode is molten or not and the shielding gas is different.

    Among them, non-melting extremely inert gas shielded welding can be used for welding almost all metals and alloys, but due to its high cost, it is usually used for welding non-ferrous metals such as aluminum, magnesium, titanium and copper, as well as stainless steel and heat-resistant steel. In addition to the main advantages of non-melting electrode gas shielded welding (welding in various positions; suitable for welding of most metals such as non-ferrous metals, stainless steel, heat-resistant steel, carbon steel, and alloy steel), it also has faster welding speed and higher deposition efficiency.

  • Plasma arc welding
  • Plasma arc is widely used in welding, spraying and surfacing. It can weld thinner and thinner workpieces (such as welding of extremely thin metals below 1mm).

  • Electroslag welding
  • Electroslag welding can weld various carbon structural steels, low-alloy high-strength steels, heat-resistant steels and medium-alloy steels, and has been widely used in the manufacture of boilers, pressure vessels, heavy machinery, metallurgical equipment and ships, etc. middle. In addition, electroslag welding can be used for large-area surfacing and repair welding.

  • Electron beam welding
  • Electron beam welding equipment is complex, expensive, and requires high maintenance; the assembly requirements of weldments are high, and the size is limited by the size of the vacuum chamber; X-ray protection is required. Electron beam welding can be used to weld most metals and alloys and workpieces requiring small deformation and high quality. At present, electron beam welding has been widely used in precision instruments, meters and electronic industries.

    Pressure Welding

    The welding process must exert pressure on the weldment, which is divided into resistance welding and ultrasonic welding.

    1. Resistance welding
    2. There are four main resistance welding methods, namely spot welding, seam welding, projection welding and butt welding. Spot welding is suitable for stamped and rolled thin plate members that can be overlapped, the joints do not require airtightness, and the thickness is less than 3mm. Seam welding is widely used in sheet welding of oil drums, cans, radiators, aircraft and automobile fuel tanks. Projection welding is mainly used for welding stamping parts of low carbon steel and low alloy steel. The most suitable thickness for plate projection welding is 0.5-4mm.

    3. Ultrasonic welding
    4. Ultrasonic welding is in principle suitable for welding most thermoplastics.

    Braze Welding

    Use a metal material with a lower melting point than the base material as the base material, use the liquid base material to wet the base material, fill the gap, and diffuse with the base material to realize the connection of the weldment.

    1. Flame annealing welding
    2. Flame annealing welding is suitable for annealing welding of materials such as carbon steel, cast iron, copper and its alloys. An oxyacetylene flame is a commonly used flame.

    3. Resistance welding
    4. There are two methods of resistance welding: direct heating and indirect heating. Indirect heating resistance welding is suitable for welding of weldments with large differences in thermophysical properties and thickness.

    5. Induction welding
    6. Induction welding is characterized by fast heating, high efficiency, local heating, and easy automation. According to the protection method, it can be divided into induction welding in air, induction welding in shielding gas and induction welding in vacuum.

    Published by Jan 04, 2023 Source :twgreatdaily

    Further reading

    You might also be interested in ...

    Headline
    Knowledge
    Medical Consumables: Global Guardians of Health
    Medical consumables are a wide range of products used by healthcare professionals on a daily basis, typically for a single use before being disposed of. Their primary purpose is to ensure patient care, maintain hygiene, and prevent the spread of infection. These items are crucial for everything from routine checkups to complex surgical procedures.
    Headline
    Knowledge
    Closed Suction System: Revolutionizing Respiratory Care
    In critical care, airway management is a vital part of sustaining a patient's life. When patients rely on ventilators, clearing respiratory secretions becomes a crucial aspect of daily care. This seemingly simple, yet critically important, procedure has undergone significant evolution over the past few decades, progressing from early open suctioning to today's more advanced and safer Closed Suction System (CSS).
    Headline
    Knowledge
    Understanding Plastic Materials: A Professional Analysis and Application Guide
    Plastic materials, due to their diverse properties and wide range of applications, have become indispensable in modern industries and daily life. Choosing the right plastic material for different needs is crucial for optimizing product performance and achieving environmental benefits. The following is a professional review of the characteristics, applications, and pros and cons of the main plastic materials.
    Headline
    Knowledge
    Exploring Rubber Processing Technology: Core and Challenges of Modern Manufacturing
    Rubber processing is one of the most critical stages in modern manufacturing. From vehicle tires to industrial equipment seals and various consumer goods, rubber materials are everywhere. As the demand for high-quality and efficient products rises, rubber processing technologies continue to evolve. This article explores the basic knowledge of rubber processing, key technologies, and future trends.
    Headline
    Knowledge
    Understanding the Coffee Robot: A Comprehensive Analysis
    This article provides a comprehensive overview of coffee robots—automated machines that brew and serve coffee using advanced robotics and artificial intelligence. It outlines their key features, including AI-driven customization, app connectivity, 24/7 efficiency, and diverse drink options. The report also examines their growing impact on the coffee industry, highlighting benefits for both consumers and businesses such as convenience, consistency, and reduced labor costs. Case studies like CafeXbot, Artly Coffee, and Rozum Café illustrate how coffee robots are reshaping the coffee experience and driving market growth worldwide.
    Headline
    Knowledge
    Understanding PU Foam: Properties, Types, and Industrial Uses
    PU foam is no longer merely a cushioning material. It has become a core functional component across sports, medical, fashion, and lifestyle industries. By adjusting density, thickness, and surface feel, PU can meet diverse requirements for breathability, antimicrobial performance, durability, and comfort. It also aligns with brand trends toward eco-friendly formulations and recyclable material solutions.
    Headline
    Knowledge
    Understanding Helical Filters: A Comprehensive Overview
    Helical filters are essential components in radio frequency (RF) and microwave engineering, playing a key role in signal filtering and processing. Known for their compact size, high Q-factor, and broad frequency range, these filters are widely used across various industries. This report provides an in-depth look at helical filters, including their structure, operating principles, advantages, limitations, and typical applications.
    Headline
    Knowledge
    Boost Your Device’s Performance: A Guide to Choosing the Right Power Supply
    Choosing the right power supply unit (PSU) is crucial for maximizing your device's performance, ensuring stability, and prolonging the lifespan of your components. A PSU is not just a simple component that provides power; it is the heart of your system that ensures each component receives the right amount of power safely and efficiently. This report will guide you through the essential considerations and steps to select the ideal PSU for your needs.
    Headline
    Knowledge
    How to Choose the Ideal Wood Screws for Furniture and Cabinetry
    Selecting the right wood screws is essential to building strong, stable, and visually appealing furniture or cabinets. Key factors include screw size, length, thread type, head style, and compatibility with different wood materials. Coarse threads suit softwoods, while fine threads are better for hardwoods. Choosing the proper head type ensures both function and aesthetics, while accounting for environmental changes helps maintain joint integrity. Pre-drilling pilot holes can also prevent splitting, especially in dense wood. By understanding these considerations, woodworkers can achieve durable, high-quality results in their projects.
    Headline
    Knowledge
    How Effective Coolant Management Promotes Sustainable CNC Machining
    Sustainable CNC machining increasingly relies on effective coolant management to reduce environmental impact, cut costs, and improve machining performance. Coolants are essential for lubrication, heat control, and chip removal, but improper handling leads to waste and higher expenses. Proper management practices—such as regular monitoring, filtration, recycling, automation, and using eco-friendly coolants—help extend coolant life, maintain machine health, and ensure consistent product quality. Although initial investment may be a barrier, the long-term benefits include cost savings, reduced waste, and enhanced operational efficiency. Future advancements in IoT and AI are expected to further optimize coolant systems, reinforcing sustainability in CNC machining.
    Headline
    Knowledge
    A Complete Guide to Selecting the Ideal Paper Cups for Hot Beverages
    This guide provides a detailed overview of how to choose the best paper cups for hot beverages. It explores the different types of cups—single-wall, double-wall, insulated, and eco-friendly—and explains their unique features and ideal use cases. Key factors to consider include beverage temperature, insulation needs, cup size and lid compatibility, environmental impact, and safety standards. The article also outlines best practices for both consumers and businesses to ensure safe use and responsible disposal. Ultimately, selecting the right paper cup depends on balancing functionality, comfort, sustainability, and cost.
    Headline
    Knowledge
    Understanding the Difference Between Reverse Osmosis and Traditional Water Filters
    An in-depth comparison between reverse osmosis (RO) and traditional water filters, two widely used methods for purifying drinking water. It outlines how RO uses a semi-permeable membrane to remove dissolved salts, heavy metals, and microorganisms, making it ideal for areas with highly contaminated water. In contrast, traditional filters rely on physical and chemical filtration - often using activated carbon - to improve taste and remove larger particles. While RO systems offer superior contaminant removal, they come with higher costs and water usage. Traditional filters are more affordable and environmentally friendly but less effective against microscopic impurities. The article concludes that the best choice depends on specific water quality needs, and in some cases, combining both systems can offer the most comprehensive solution.
    Agree