Key Components of Automotive Semiconductors: ECU, MCU and Sensor
Knowledge

Key Components of Automotive Semiconductors: ECU, MCU and Sensor

The automotive semiconductor market continues to be optimistic. At present, the main automotive semiconductor chips include microcontrollers (MCU), power management ICs, digital signal controllers (DSP), sensors, power semiconductors, discrete components, micro-electromechanical (MEMS), memory, customized application IC (ASIC), etc. The automotive chip supply chain is complex and long. After the shortage storm in 2021, automakers began to shorten the semiconductor supply chain, hoping to shorten the long chain. Some automakers even have the idea of developing and designing automotive semiconductors by themselves.
Published: Jan 13, 2023
Key Components of Automotive Semiconductors: ECU, MCU and Sensor

Looking at the needs of consumers in the automobile market, "convenience", "safety" and "energy saving" are three clear demands, which represent consumers' desire for "smart" and "energy-saving" cars, and also It has repeatedly stimulated the research and development energy of automotive electronics technology. Thanks to the efforts of major car manufacturers, the degree of electronics in automobiles is gradually increasing, and the cost of automotive electronics in the overall cost of automobiles has increased from 2 to 3% in the 1980s to 40 to 50% now. But how to achieve intelligence and energy saving?

First of all, intelligence can be divided into two main axes:

  1. Combining information and communication technology to provide drivers and passengers with various entertainment and driving information.
  2. Help drivers reduce the energy required to drive, and even achieve safety performance beyond the human control of traditional machinery. Regardless of the above-mentioned types, it is required that the car can detect the environment by itself through various technologies, and make appropriate responses after analyzing the information, which is smart, efficient, and accurately meets the needs.

Such an operation process is very similar to the rapid development of the Internet of Things. The operation is mainly divided into three layers, from data acquisition, data processing, and sending instructions to the driver. Everything is completed by automotive electronics to help drivers achieve the three goals of "convenience", "safety" and "energy saving". As currently seen in the various fields of automotive electronics, there are various key semiconductors and components required for their functions, and ECU, MCU and sensors are the most important elements throughout various systems. The following are some simple understandings for these three components.

ECU

The first step in understanding automotive electronics is the Electronic Control Unit (ECU). Almost every automotive electronic system has this core role. An ECU can be said to be an embedded computer, which is used to control the major systems of the car. The internal components include a microcontroller (MCU), input, and output. circuit, AD (analog and digital) conversion circuit, power supply components, in-vehicle communication circuit, etc. The control of various systems in the car needs to rely on the ECU. Therefore, as the complexity of the system increases, the number of ECUs in the car is also gradually increasing. According to data, there are currently hundreds of ECU in high-end cars of BMW and Benz.

MCU

Microcontrollers (MCUs) are most widely used in consumer electronics, and the second largest is automotive electronics. The most important MCU in the ECU is to integrate the central processing unit (CPU), memory, various input/output interfaces, and timer/counter on one IC. According to internal data bus bandwidth, WSTS (World Semiconductor Trade Statistics Organization) divides MCU into four levels: 4-bit, 8-bit, 16-bit and 32-bit. With the complexity of the application field, MCUs of different levels are applicable. In the automotive field, take the MCU series products provided by Freescale as an example. 8-bit MCU is relatively low; brakes, airbags, and body stability control, which require high computing and processing capabilities of the MCU, use 16-bit; and now, while moving towards intelligence, 32-bit has leapt into the mainstream This specification is commonly used in higher-level electronic information systems such as multimedia, entertainment, and driving information.

Sensor

The ECU/MCU of automotive electronics is responsible for data processing and calculation, and the most important thing is the various sensors responsible for collecting data. For the construction of driving assistance systems, image sensors, millimeter-wave radars, lidars, acceleration sensors, angular velocity sensors, wheel speed sensors, tire pressure sensors, etc. are used. Among sensors, image sensors are getting more and more attention.

With the advancement of imaging technology and the improvement of the system integration ability of car manufacturers, the information of multiple image sensors distributed inside and outside the vehicle can be comprehensively applied, making up for the lack of human vision, and achieving driving assistance and safety improvement. For example, a single system such as lane departure warning system, parking assistance system, blind spot detection system, and reversing warning system can add benefits to the driver's driving safety. By further integrating these systems, a more comprehensive, safe and comfortable driving environment can be constructed, which is also the main way for cars to become intelligent and even reach the ultimate goal-autonomous driving.

Ability to Adapt to the Environment

In addition to the functional development and processing capabilities of key components that must keep pace with the application, automotive semiconductors must face more challenges in the operating environment than general consumer electronics or even industrial semiconductors. Cars must adapt to the climate and environment of different countries and take into account long-term mobility and safety. Therefore, except for the IC components required for the on-board system installed in the car body, which have low environmental requirements, most of the other car electronic components must be operate in harsh environments. In terms of the tolerable ambient temperature, the requirements for general ICs are at most minus 10°C to 70°C, but the requirements for automotive electronics must be from minus 40°C to 155°C, and reach more than a thousand cycles. In addition to moisture load resistance, the requirements for high temperature resistance, shock resistance, and failure rate are much stricter than those for general consumer electronic parts. Coupled with the long service life of the car, the operating life and durability are also severely tested, and the supply life of parts may even exceed 30 years. These are the differences between the automotive semiconductor market and other application markets.

Published by Jan 13, 2023 Source :Yahoo

Further reading

You might also be interested in ...

Headline
Knowledge
Medical Consumables: Global Guardians of Health
Medical consumables are a wide range of products used by healthcare professionals on a daily basis, typically for a single use before being disposed of. Their primary purpose is to ensure patient care, maintain hygiene, and prevent the spread of infection. These items are crucial for everything from routine checkups to complex surgical procedures.
Headline
Knowledge
Closed Suction System: Revolutionizing Respiratory Care
In critical care, airway management is a vital part of sustaining a patient's life. When patients rely on ventilators, clearing respiratory secretions becomes a crucial aspect of daily care. This seemingly simple, yet critically important, procedure has undergone significant evolution over the past few decades, progressing from early open suctioning to today's more advanced and safer Closed Suction System (CSS).
Headline
Knowledge
Understanding Plastic Materials: A Professional Analysis and Application Guide
Plastic materials, due to their diverse properties and wide range of applications, have become indispensable in modern industries and daily life. Choosing the right plastic material for different needs is crucial for optimizing product performance and achieving environmental benefits. The following is a professional review of the characteristics, applications, and pros and cons of the main plastic materials.
Headline
Knowledge
Exploring Rubber Processing Technology: Core and Challenges of Modern Manufacturing
Rubber processing is one of the most critical stages in modern manufacturing. From vehicle tires to industrial equipment seals and various consumer goods, rubber materials are everywhere. As the demand for high-quality and efficient products rises, rubber processing technologies continue to evolve. This article explores the basic knowledge of rubber processing, key technologies, and future trends.
Headline
Knowledge
Understanding the Coffee Robot: A Comprehensive Analysis
This article provides a comprehensive overview of coffee robots—automated machines that brew and serve coffee using advanced robotics and artificial intelligence. It outlines their key features, including AI-driven customization, app connectivity, 24/7 efficiency, and diverse drink options. The report also examines their growing impact on the coffee industry, highlighting benefits for both consumers and businesses such as convenience, consistency, and reduced labor costs. Case studies like CafeXbot, Artly Coffee, and Rozum Café illustrate how coffee robots are reshaping the coffee experience and driving market growth worldwide.
Headline
Knowledge
Understanding PU Foam: Properties, Types, and Industrial Uses
PU foam is no longer merely a cushioning material. It has become a core functional component across sports, medical, fashion, and lifestyle industries. By adjusting density, thickness, and surface feel, PU can meet diverse requirements for breathability, antimicrobial performance, durability, and comfort. It also aligns with brand trends toward eco-friendly formulations and recyclable material solutions.
Headline
Knowledge
Understanding Helical Filters: A Comprehensive Overview
Helical filters are essential components in radio frequency (RF) and microwave engineering, playing a key role in signal filtering and processing. Known for their compact size, high Q-factor, and broad frequency range, these filters are widely used across various industries. This report provides an in-depth look at helical filters, including their structure, operating principles, advantages, limitations, and typical applications.
Headline
Knowledge
How to Choose the Ideal Wood Screws for Furniture and Cabinetry
Selecting the right wood screws is essential to building strong, stable, and visually appealing furniture or cabinets. Key factors include screw size, length, thread type, head style, and compatibility with different wood materials. Coarse threads suit softwoods, while fine threads are better for hardwoods. Choosing the proper head type ensures both function and aesthetics, while accounting for environmental changes helps maintain joint integrity. Pre-drilling pilot holes can also prevent splitting, especially in dense wood. By understanding these considerations, woodworkers can achieve durable, high-quality results in their projects.
Headline
Knowledge
How Effective Coolant Management Promotes Sustainable CNC Machining
Sustainable CNC machining increasingly relies on effective coolant management to reduce environmental impact, cut costs, and improve machining performance. Coolants are essential for lubrication, heat control, and chip removal, but improper handling leads to waste and higher expenses. Proper management practices—such as regular monitoring, filtration, recycling, automation, and using eco-friendly coolants—help extend coolant life, maintain machine health, and ensure consistent product quality. Although initial investment may be a barrier, the long-term benefits include cost savings, reduced waste, and enhanced operational efficiency. Future advancements in IoT and AI are expected to further optimize coolant systems, reinforcing sustainability in CNC machining.
Headline
Knowledge
A Complete Guide to Selecting the Ideal Paper Cups for Hot Beverages
This guide provides a detailed overview of how to choose the best paper cups for hot beverages. It explores the different types of cups—single-wall, double-wall, insulated, and eco-friendly—and explains their unique features and ideal use cases. Key factors to consider include beverage temperature, insulation needs, cup size and lid compatibility, environmental impact, and safety standards. The article also outlines best practices for both consumers and businesses to ensure safe use and responsible disposal. Ultimately, selecting the right paper cup depends on balancing functionality, comfort, sustainability, and cost.
Headline
Knowledge
Understanding the Difference Between Reverse Osmosis and Traditional Water Filters
An in-depth comparison between reverse osmosis (RO) and traditional water filters, two widely used methods for purifying drinking water. It outlines how RO uses a semi-permeable membrane to remove dissolved salts, heavy metals, and microorganisms, making it ideal for areas with highly contaminated water. In contrast, traditional filters rely on physical and chemical filtration - often using activated carbon - to improve taste and remove larger particles. While RO systems offer superior contaminant removal, they come with higher costs and water usage. Traditional filters are more affordable and environmentally friendly but less effective against microscopic impurities. The article concludes that the best choice depends on specific water quality needs, and in some cases, combining both systems can offer the most comprehensive solution.
Headline
Knowledge
A Comprehensive Guide to Selecting Cutting Techniques in Plastic Bag Production
This article provides a detailed comparison of hot and cold cutting methods used in plastic bag manufacturing, emphasizing how the choice impacts production efficiency, edge sealing, and material compatibility. Hot cutting uses heated blades to cut and seal simultaneously, making it ideal for leak-proof and high-speed production, while cold cutting offers precise, sharp cuts without heat damage, suitable for a variety of bag types. The selection depends on factors such as material type, production requirements, and environmental considerations. Understanding the strengths and limitations of each method helps manufacturers optimize their processes and meet evolving industry demands.
Agree