What Is the Basics and Advantage of Between Liquid and Powder Coating?
Knowledge

What Is the Basics and Advantage of Between Liquid and Powder Coating?

Metal fabricators looking to take on finishing should know about two of the most common finishing alternatives—liquid and powder coating—and the requirements involved for a company hoping to apply one or both.
Published: Oct 20, 2020
What Is the Basics and Advantage of Between Liquid and Powder Coating?

What is the liquid coating?

  1. Introduction
  2. The basic raw materials comprising a liquid coating are additives, carriers, pigments, and resins. Additives make up the smallest portion of any liquid coating composition, but they impart special characteristics on the overall finish; for example, they might assist with rust prevention or UV protection. The carrier is the main liquid used to formulate the paint. The carrier can be water, solvent, or a combination of the two. Liquid coatings heavy in solvents traditionally have been the dominant form of liquid finish applied to metal parts over the years, but more interest has been directed to waterborne and high-solids coatings, which release a minimal amount of volatile organic compounds (VOCs) during application when compared to traditional solventborne coatings. Pigments play a role in final appearance and performance to some extent. As a rule, the volume of pigments influences the gloss of the film. The more pigment present, the lower the coating’s gloss. Resins act as the base of the liquid coating. They primarily govern the overall performance of the coating, helping the paint to excel for particular applications.

    Liquid coating finishes can be applied in various thicknesses. Obviously, the more mils applied, the better the protection. In many instances, a manufacturer, such as an automaker, will seek to balance maximum protection with the minimum amount of paint mil thickness.

  3. Advantage
  • Economical
  • The first notable benefit for liquid coating is the fact that because the paint can be applied thinly so you need less of it, which in turn makes it an economic option. Less painting material means less money and an affordable option for you!

  • Variety of Choice
  • Liquid coating also gives a vast variety of options in more ways than one. For starters, the liquid paint has a wide expanse of color choices, including both metallics and pearls, which can give your product the flair you’ve been looking for. Liquid also comes in various specialty coats. These specialty coats include glow-in-the-dark and teflon, which are ideal for specialty markets like military, medical, aerospace, and transportation needs.

  • Lower Error
  • When painting with a liquid spray, the occurrence of film builds lowers. More film builds means a higher chance of rejected parts and a longer production time, which isn’t ideal for anyone. With consistent and effective coating, you and your team save a substantial amount of time and money.

  • Easily Markable
  • Sometimes, there will be sections of a piece that are not supposed to be painted and are taped off. Regular tape will not withstand the heat of the oven to keep a section paint-free on products that require baking. With liquid paint, because there is no need for an oven to set the paint, so sections can easily be marked off.

What is the powder coating?

  1. Introduction
  2. Powder coatings don’t require a carrier. The additives, pigments, and resins are formulated in a powder form. To apply the material to parts, the powder is electrostatically charged and conveyed via compressed air. The charged powder is attracted to a grounded part. The part is then taken through an oven, where the heat changes the powder from a solid to a liquid and then to a solid coating. Generally, powders do not have any or extremely low VOCs.

    Properly cured powder coatings can offer superior protection against chipping, scratching, UV rays, and corrosive elements. This is why powder coatings are often specified to coat metal products destined for outdoor use.

  3. Advantage

There are several advantages of powder coating over conventional liquid coatings:

  • Powder coatings emit zero or near zero volatile organic compounds (VOC).
  • Powder coatings can produce much thicker coatings than conventional liquid coatings without running or sagging.
  • Powder coating overspray can be recycled and thus it is possible to achieve nearly 100% use of the coating.
  • Powder coating production lines produce less hazardous waste than conventional liquid coatings.
  • Powder coated items generally have fewer appearance differences between horizontally coated surfaces and vertically coated surfaces than liquid coated items.
  • A wide range of specialty effects is easily accomplished which would be impossible to achieve with other coating processes.

How Does the Coating Affect the Environment?

Solventborne coatings are often specified for a finish because of their dependable performance and ability to air-dry in a matter of minutes. Unfortunately, most of the traditional liquid paint formulations from yesteryear no longer are around because of the need to reduce VOCs emitted during application.

That has led to the development of more environmentally friendly coatings, such as new waterborne formulations and high-solids coatings, that emit low VOCs. The waterborne, which have come a long way from the early versions used 15 years ago, are slowly growing in acceptance. However, some manufacturers still have reservations about applying a water-based product directly to metal. High-solids are liquid coatings that have a solids content of at least 65 percent, which means minimal solvents are present. But fewer solvents also means that the coating is more viscous. That has led to the development of multipart application systems (referred to as 2K systems if two parts are mixed, 3K if three parts are mixed, etc.) that are formulated to be mixed only seconds before application.

All finishers that apply liquid coatings spray to waste. The overspray can’t be reclaimed. If filters are used to capture the overspray, the finisher has to dispose of the filters according to regulations established by local authorities.

The powder booth does not require exhaust. As stated previously, if any VOCs are emitted during the powder coating process, they are typically very low.

Powder coatings can be recycled with the right reclamation equipment. Companies looking for Class A finishes have reclamation systems that depend on thorough cleaning and maintenance because any cross-contamination of reclaimed material ruins the original material’s ability to deliver a specific color.

Again, the disposal of unreclaimed powder coating material is governed by local regulations. In some instances, local law may require disposal in sealed containers or require that the powder coating material be baked into the form of brick for disposal in a local landfill.

Published by Oct 20, 2020 Source :thefabricator.com Source :georgiapowdercoating Source :knotwood

Further reading

You might also be interested in ...

Headline
Knowledge
Medical Consumables: Global Guardians of Health
Medical consumables are a wide range of products used by healthcare professionals on a daily basis, typically for a single use before being disposed of. Their primary purpose is to ensure patient care, maintain hygiene, and prevent the spread of infection. These items are crucial for everything from routine checkups to complex surgical procedures.
Headline
Knowledge
Closed Suction System: Revolutionizing Respiratory Care
In critical care, airway management is a vital part of sustaining a patient's life. When patients rely on ventilators, clearing respiratory secretions becomes a crucial aspect of daily care. This seemingly simple, yet critically important, procedure has undergone significant evolution over the past few decades, progressing from early open suctioning to today's more advanced and safer Closed Suction System (CSS).
Headline
Knowledge
Understanding Plastic Materials: A Professional Analysis and Application Guide
Plastic materials, due to their diverse properties and wide range of applications, have become indispensable in modern industries and daily life. Choosing the right plastic material for different needs is crucial for optimizing product performance and achieving environmental benefits. The following is a professional review of the characteristics, applications, and pros and cons of the main plastic materials.
Headline
Knowledge
Understanding the Coffee Robot: A Comprehensive Analysis
This article provides a comprehensive overview of coffee robots—automated machines that brew and serve coffee using advanced robotics and artificial intelligence. It outlines their key features, including AI-driven customization, app connectivity, 24/7 efficiency, and diverse drink options. The report also examines their growing impact on the coffee industry, highlighting benefits for both consumers and businesses such as convenience, consistency, and reduced labor costs. Case studies like CafeXbot, Artly Coffee, and Rozum Café illustrate how coffee robots are reshaping the coffee experience and driving market growth worldwide.
Headline
Knowledge
Understanding Helical Filters: A Comprehensive Overview
Helical filters are essential components in radio frequency (RF) and microwave engineering, playing a key role in signal filtering and processing. Known for their compact size, high Q-factor, and broad frequency range, these filters are widely used across various industries. This report provides an in-depth look at helical filters, including their structure, operating principles, advantages, limitations, and typical applications.
Headline
Knowledge
Boost Your Device’s Performance: A Guide to Choosing the Right Power Supply
Choosing the right power supply unit (PSU) is crucial for maximizing your device's performance, ensuring stability, and prolonging the lifespan of your components. A PSU is not just a simple component that provides power; it is the heart of your system that ensures each component receives the right amount of power safely and efficiently. This report will guide you through the essential considerations and steps to select the ideal PSU for your needs.
Headline
Knowledge
How to Choose the Ideal Wood Screws for Furniture and Cabinetry
Selecting the right wood screws is essential to building strong, stable, and visually appealing furniture or cabinets. Key factors include screw size, length, thread type, head style, and compatibility with different wood materials. Coarse threads suit softwoods, while fine threads are better for hardwoods. Choosing the proper head type ensures both function and aesthetics, while accounting for environmental changes helps maintain joint integrity. Pre-drilling pilot holes can also prevent splitting, especially in dense wood. By understanding these considerations, woodworkers can achieve durable, high-quality results in their projects.
Headline
Knowledge
How Effective Coolant Management Promotes Sustainable CNC Machining
Sustainable CNC machining increasingly relies on effective coolant management to reduce environmental impact, cut costs, and improve machining performance. Coolants are essential for lubrication, heat control, and chip removal, but improper handling leads to waste and higher expenses. Proper management practices—such as regular monitoring, filtration, recycling, automation, and using eco-friendly coolants—help extend coolant life, maintain machine health, and ensure consistent product quality. Although initial investment may be a barrier, the long-term benefits include cost savings, reduced waste, and enhanced operational efficiency. Future advancements in IoT and AI are expected to further optimize coolant systems, reinforcing sustainability in CNC machining.
Headline
Knowledge
A Complete Guide to Selecting the Ideal Paper Cups for Hot Beverages
This guide provides a detailed overview of how to choose the best paper cups for hot beverages. It explores the different types of cups—single-wall, double-wall, insulated, and eco-friendly—and explains their unique features and ideal use cases. Key factors to consider include beverage temperature, insulation needs, cup size and lid compatibility, environmental impact, and safety standards. The article also outlines best practices for both consumers and businesses to ensure safe use and responsible disposal. Ultimately, selecting the right paper cup depends on balancing functionality, comfort, sustainability, and cost.
Headline
Knowledge
Understanding the Difference Between Reverse Osmosis and Traditional Water Filters
An in-depth comparison between reverse osmosis (RO) and traditional water filters, two widely used methods for purifying drinking water. It outlines how RO uses a semi-permeable membrane to remove dissolved salts, heavy metals, and microorganisms, making it ideal for areas with highly contaminated water. In contrast, traditional filters rely on physical and chemical filtration - often using activated carbon - to improve taste and remove larger particles. While RO systems offer superior contaminant removal, they come with higher costs and water usage. Traditional filters are more affordable and environmentally friendly but less effective against microscopic impurities. The article concludes that the best choice depends on specific water quality needs, and in some cases, combining both systems can offer the most comprehensive solution.
Headline
Knowledge
A Comprehensive Guide to Selecting Cutting Techniques in Plastic Bag Production
This article provides a detailed comparison of hot and cold cutting methods used in plastic bag manufacturing, emphasizing how the choice impacts production efficiency, edge sealing, and material compatibility. Hot cutting uses heated blades to cut and seal simultaneously, making it ideal for leak-proof and high-speed production, while cold cutting offers precise, sharp cuts without heat damage, suitable for a variety of bag types. The selection depends on factors such as material type, production requirements, and environmental considerations. Understanding the strengths and limitations of each method helps manufacturers optimize their processes and meet evolving industry demands.
Headline
Knowledge
Exploring Ventilator-Associated Pneumonia (VAP) and Its Effects on ICU Patients
Ventilator-associated pneumonia (VAP) is a significant healthcare challenge in intensive care units, typically occurring in patients who have undergone mechanical ventilation for at least 48 hours. It is associated with high morbidity, mortality, and healthcare costs. VAP develops due to respiratory tract colonization by pathogens, facilitated by invasive devices like endotracheal tubes. Common bacteria include Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. Risk factors range from prolonged ventilation to prior antibiotic use and underlying health issues. Diagnosing VAP is difficult due to overlapping symptoms with other lung conditions and the absence of standardized criteria, often leading to antibiotic overuse. Preventive strategies—such as ventilator care bundles, elevating the head of the bed, maintaining oral hygiene, and staff training—are critical to reducing its incidence. While progress has been made, ongoing research and consistent application of evidence-based practices are essential to improve outcomes and lower the burden of VAP in ICU settings.
Agree