Semiconductor Industry Drives Technological Innovation
Knowledge

Semiconductor Industry Drives Technological Innovation

Integrated circuits are a combination of wide-ranging electronic circuits integrated into a semiconductor chip. They are designed to perform the advanced computational functions which are used in key processor programs. Let's learn more about these fascinating integrated circuits.
Published: Mar 28, 2022
Semiconductor Industry Drives Technological Innovation

While global semiconductor sales were $412 billion in 2019, down slightly from 2018's all-time high, the overall industry remained strong, with U.S. companies accounting for nearly 50 percent of the market. The artificial intelligence (AI) related semiconductor market had revenue of $6 billion in 2019, and will exceed $30 billion in revenue by 2022, with an expected annual growth rate (CAGR) of nearly 50%.

Semiconductors: The Heart of the Electronics Industry

"Semiconductor" refers to the key components of millions of electronic devices used in education, research, communications, healthcare, transportation, energy, and other industries. Today's personal computers, smartphones, automobiles, data center servers, and game consoles rely on semiconductors for their core computing and advanced functions.

When we operate a mouse, swipe a card, type on a keyboard, or speak into an electronic device, we expect immediate and accurate responses to our commands. The laptop's semiconductor-based central processing unit (CPU) and graphics processing unit (GPU) enable computing functions that instantly turn questions into answers.

What is a semiconductor?

Integrated circuits (ICs) are made from semiconductor materials, such as silicon, and are fundamental components of modern electronic devices throughout the commercial and consumer industries. These circuits must be able to act as electrically controlled on/off switches (transistors) to perform basic logic operations in a computer. To achieve this near-instantaneous switching capability, the circuit is constructed of semiconductor material, a material that has an electrical resistance between that of a conductor and an insulator. The manufacturing process of semiconductor devices requires the execution of multiple steps in specialized facilities called wafer foundries or wafer fabs. It takes years of industry experience and research to develop, design, manufacture, release, and service a single semiconductor product family.

Semiconductor companies must simultaneously produce multiple product families at different stages of the life cycle. Today's semiconductor manufacturing process is becoming more and more mature, and a standardized production process has been derived, from wafer (substrate + epitaxial) → design → manufacturing → packaging.

Semiconductor production is an extremely complex process with long lead times. Semiconductor production time can be affected by the level of complexity, but it takes an average of three to five years from initial research to finished product. Once a product is released, some customer contracts may require the supplier to continue supplying the product for a while.

What are semiconductor materials?

Semiconductors are some materials whose conductivity is between conductors and insulators. Among them, "silicon" is the mainstream semiconductor material, accounting for about 90% of the global semiconductor market. Secondary types of semiconductors such as gallium arsenide (GaAs) and indium phosphide (InP), mostly used in communication and sensing related products, have relatively small output values and application ranges. In terms of semiconductor materials, due to the difficulty in obtaining raw materials and processing difficulties, an oligopolistic market is formed.

What is an Integrated Circuit (IC)?

Integrated circuits consist of many tiny active and passive components. Active components include transistors and diodes, while passive components include capacitors and resistors. The surface of the chip is covered with a plastic shell to protect the numerous integrated circuits inside, and by combining multiple chips, electronic products can be manufactured.

In the past, circuits made to connect components such as resistors, capacitors, inductors, transistors, diodes, etc. were composed of copper wires. Due to their bulkiness, it was difficult to manufacture small electrical products. The development of integrated circuits has changed the face of electronics technology, and now circuits have much smaller dimensions but higher power and safety.

Integrated circuits are manufactured by doping different types of materials into a silicon substrate, to produce various semiconductor components. The materials doped into the silicon control the movement of electrons through the material, forming a so-called "electricity crystal". 

Definition of Integrated Circuit:

An integrated circuit (IC) is a small chip of semiconductor material and the circuit material connected to the chip. The body is small compared to standard circuits composed of independent circuit components. The most commonly used IC is a single-crystal integrated circuit.

Integrated Circuit (IC) Design:

  1. Analog IC:
    The analog design method is used to design integrated circuits, focusing on perfect power consumption, amplification, and resistance, and is mostly used in oscillators, filters and regulators.
  2. Digital integrated circuits:
    Microprocessors are digitally designed to use binary input data, which maximizes circuit density. This ensures maximum overall efficiency, and is mostly used in computer memory (such as RAM and ROM).
  3. Mixed-signal ICs:
    Hybrid designs combine the principles of analog and digital ICs. Mixed-signal ICs are used in digital-to-analog converters, analog-to-digital converters (D/A and A/D converters), and clock and timer ICs.

The structure of the integrated circuit (IC):

Integrated circuits (ICs) have complex structures composed of semiconductors interconnected by copper and other materials to form resistors, transistors, and other components. The cut and formed combination of these materials is sometimes called a wafer. The chip is very fragile, and the connection between the layers is also quite complicated. Since the integrated circuit chip is too small to be connected by soldering, the integrated circuit needs to be packaged into the common black chip which we are familiar with.

An IC is packaged in such a way that it can be easily connected to its application product. There are many different types of packages, each with a unique size and mounting style. Every pin and function in an IC is unique. Uniquely, ICs use notches or dots to represent the first pin, and once the first pin is identified, the remaining PINs increase sequentially around the die in a counter-clockwise fashion.

Characteristics of Integrated Circuits (ICs):

  • Structure and Packaging: An integrated circuit consists of resistors, diodes, transistors, and capacitors, all connected with highly conductive connectors. Connectors are often made of highly conductive material such as gold to keep the chip from overheating.
  • Dimensions of the integrated circuit: The size of integrated circuits varies from 1 square millimeter to more than 200 millimeters.
  • Integration of integrated circuits: An integrated circuit can combine many different devices with just one chip. A single integrated circuit chip can combine microprocessors, memory, ports, etc.

Technological trends in 5G, augmented and virtual reality, IoT, and autonomous driving are driving unprecedented demand for smaller devices with higher functionality, memory, and speed. From manufacturing and advanced packaging to component packaging and manufacturing, equipment support and maintenance, the industry is committed to continuously improving product performance, process efficiency, and yield to create more semiconductor applications.


Published by Mar 28, 2022 Source :tech, Source :amd

Further reading

You might also be interested in ...

Headline
Knowledge
Medical Consumables: Global Guardians of Health
Medical consumables are a wide range of products used by healthcare professionals on a daily basis, typically for a single use before being disposed of. Their primary purpose is to ensure patient care, maintain hygiene, and prevent the spread of infection. These items are crucial for everything from routine checkups to complex surgical procedures.
Headline
Knowledge
Closed Suction System: Revolutionizing Respiratory Care
In critical care, airway management is a vital part of sustaining a patient's life. When patients rely on ventilators, clearing respiratory secretions becomes a crucial aspect of daily care. This seemingly simple, yet critically important, procedure has undergone significant evolution over the past few decades, progressing from early open suctioning to today's more advanced and safer Closed Suction System (CSS).
Headline
Knowledge
Understanding Plastic Materials: A Professional Analysis and Application Guide
Plastic materials, due to their diverse properties and wide range of applications, have become indispensable in modern industries and daily life. Choosing the right plastic material for different needs is crucial for optimizing product performance and achieving environmental benefits. The following is a professional review of the characteristics, applications, and pros and cons of the main plastic materials.
Headline
Knowledge
Exploring Rubber Processing Technology: Core and Challenges of Modern Manufacturing
Rubber processing is one of the most critical stages in modern manufacturing. From vehicle tires to industrial equipment seals and various consumer goods, rubber materials are everywhere. As the demand for high-quality and efficient products rises, rubber processing technologies continue to evolve. This article explores the basic knowledge of rubber processing, key technologies, and future trends.
Headline
Knowledge
Understanding the Coffee Robot: A Comprehensive Analysis
This article provides a comprehensive overview of coffee robots—automated machines that brew and serve coffee using advanced robotics and artificial intelligence. It outlines their key features, including AI-driven customization, app connectivity, 24/7 efficiency, and diverse drink options. The report also examines their growing impact on the coffee industry, highlighting benefits for both consumers and businesses such as convenience, consistency, and reduced labor costs. Case studies like CafeXbot, Artly Coffee, and Rozum Café illustrate how coffee robots are reshaping the coffee experience and driving market growth worldwide.
Headline
Knowledge
Understanding PU Foam: Properties, Types, and Industrial Uses
PU foam is no longer merely a cushioning material. It has become a core functional component across sports, medical, fashion, and lifestyle industries. By adjusting density, thickness, and surface feel, PU can meet diverse requirements for breathability, antimicrobial performance, durability, and comfort. It also aligns with brand trends toward eco-friendly formulations and recyclable material solutions.
Headline
Knowledge
Understanding Helical Filters: A Comprehensive Overview
Helical filters are essential components in radio frequency (RF) and microwave engineering, playing a key role in signal filtering and processing. Known for their compact size, high Q-factor, and broad frequency range, these filters are widely used across various industries. This report provides an in-depth look at helical filters, including their structure, operating principles, advantages, limitations, and typical applications.
Headline
Knowledge
Boost Your Device’s Performance: A Guide to Choosing the Right Power Supply
Choosing the right power supply unit (PSU) is crucial for maximizing your device's performance, ensuring stability, and prolonging the lifespan of your components. A PSU is not just a simple component that provides power; it is the heart of your system that ensures each component receives the right amount of power safely and efficiently. This report will guide you through the essential considerations and steps to select the ideal PSU for your needs.
Headline
Knowledge
How to Choose the Ideal Wood Screws for Furniture and Cabinetry
Selecting the right wood screws is essential to building strong, stable, and visually appealing furniture or cabinets. Key factors include screw size, length, thread type, head style, and compatibility with different wood materials. Coarse threads suit softwoods, while fine threads are better for hardwoods. Choosing the proper head type ensures both function and aesthetics, while accounting for environmental changes helps maintain joint integrity. Pre-drilling pilot holes can also prevent splitting, especially in dense wood. By understanding these considerations, woodworkers can achieve durable, high-quality results in their projects.
Headline
Knowledge
How Effective Coolant Management Promotes Sustainable CNC Machining
Sustainable CNC machining increasingly relies on effective coolant management to reduce environmental impact, cut costs, and improve machining performance. Coolants are essential for lubrication, heat control, and chip removal, but improper handling leads to waste and higher expenses. Proper management practices—such as regular monitoring, filtration, recycling, automation, and using eco-friendly coolants—help extend coolant life, maintain machine health, and ensure consistent product quality. Although initial investment may be a barrier, the long-term benefits include cost savings, reduced waste, and enhanced operational efficiency. Future advancements in IoT and AI are expected to further optimize coolant systems, reinforcing sustainability in CNC machining.
Headline
Knowledge
A Complete Guide to Selecting the Ideal Paper Cups for Hot Beverages
This guide provides a detailed overview of how to choose the best paper cups for hot beverages. It explores the different types of cups—single-wall, double-wall, insulated, and eco-friendly—and explains their unique features and ideal use cases. Key factors to consider include beverage temperature, insulation needs, cup size and lid compatibility, environmental impact, and safety standards. The article also outlines best practices for both consumers and businesses to ensure safe use and responsible disposal. Ultimately, selecting the right paper cup depends on balancing functionality, comfort, sustainability, and cost.
Headline
Knowledge
Understanding the Difference Between Reverse Osmosis and Traditional Water Filters
An in-depth comparison between reverse osmosis (RO) and traditional water filters, two widely used methods for purifying drinking water. It outlines how RO uses a semi-permeable membrane to remove dissolved salts, heavy metals, and microorganisms, making it ideal for areas with highly contaminated water. In contrast, traditional filters rely on physical and chemical filtration - often using activated carbon - to improve taste and remove larger particles. While RO systems offer superior contaminant removal, they come with higher costs and water usage. Traditional filters are more affordable and environmentally friendly but less effective against microscopic impurities. The article concludes that the best choice depends on specific water quality needs, and in some cases, combining both systems can offer the most comprehensive solution.
Agree