If You Are Not Familiar with Smart Sensor, Don’t Say You Know IoT!
Knowledge

If You Are Not Familiar with Smart Sensor, Don’t Say You Know IoT!

The IoT is becoming fragmented, and the market demand for customized measurement is increasing. Under the four conditions of product size and shape, high computing, networking capabilities, and sensor interface integration, measurement and IoT vendors will customize design, so this article will focus on a key application of customized measurement: smart sensor.
Published: Dec 15, 2022
If You Are Not Familiar with Smart Sensor, Don’t Say You Know IoT!

What is A Smart Sensor?

Before we start discussing smart sensors, let's first understand the principle and application scope of general sensors. General sensors convert physical phenomena into voltage or current through material, optical, mechanical, or chemical reactions. These physical phenomena include changes in temperature, sound, vibration, and displacement. In measurement applications, engineers and scientists can use instruments or data acquisition systems to convert analog voltage and current signals from sensors into digital signals that can be calculated by computers for subsequent analysis and presentation.

So, what is a smart sensor?

Smart sensors are devices that take information from a physical environment and use embedded microprocessors and wireless communication to monitor. Smart sensors enable more accurate and automated collection of environmental data with less erroneous noise amongst the accurately recorded information in a wide variety of environments. Due to the popularity and miniaturization of embedded systems, some sensor manufacturers have integrated embedded systems and sensors, and used the processing capabilities of embedded systems to perform real-time signal processing, judgment, or control. In Europe, America and other places around the world, the English names of smart sensors are often called smart sensor, intelligent sensor or edge sensor.

What is the difference between smart sensors and general sensors?

With the integration of embedded systems, a smart sensor also integrates several of the following components:

  • Microcontroller or CPU
  • Memory or SD card
  • Wireless communication (eg Wi-Fi, Bluetooth)
  • Power supply or battery

Therefore, when the embedded system and sensor are integrated into one and become a smart sensor, its benefits are:

  • Provide immediate response, eg for safety or disaster prevention purposes
  • Carry out self-diagnosis, immediately detect whether the sensor is abnormal or not, and give a warning
  • Analyze the data directly on the front end, without waiting for it to be sent back to the computer for calculation
  • Perform data compression to reduce the amount of subsequent data transmission (this can save subsequent network bandwidth and storage costs)
  • Perform machine learning or AI algorithms, directly optimize parameters

The Future Trend of Smart Sensors?

As mentioned above, the advantage of the smart sensor comes from its ability to directly process and analyze the signal. Therefore, as the embedded system technology evolves, the processing capability of the embedded system will also become stronger and stronger. In the past, if complex calculations were to be performed, the general sensor signals could only be transmitted to the subsequent computer to obtain the analysis results. When the processing power of the front-end embedded system is stronger, many calculations can be performed directly on the signal side, which saves the bandwidth required for data transmission, and allows the on-site users to get the calculation results immediately. In addition, due to the improved processing capabilities of embedded systems, the applications of machine learning and artificial intelligence in recent years, such as IoT and AIoT data computing and model training, can also be used to make more use of smart sensors. field.

What are the Design Challenges for Smart Sensors?

The development of smart sensors can be said to be a high degree of integration of mechanical, electrical, software/firmware, circuit and sensor knowledge. When designing these smart sensors, the difficulties encountered include:

Power saving, low power consumption design considerations

If a smart sensor needs to perform more complex calculations, its power consumption will inevitably increase. Therefore, how to strike a balance between performance and power consumption is a very important design key.

Sensor integration and signal processing

The biggest difference between smart sensors and general embedded systems is that they need to integrate sensor signals. The A/D conversion circuit designed on the embedded system is also a key point. In small applications, the placement of electronic components is very dense, so signal stability and noise must also be paid attention to.

How to maintain the design problem of reliability

Whether it is an indoor or outdoor application, smart sensors need to be designed with reliability as the premise. If it breaks down or needs to be repaired frequently, it will cause a very large maintenance burden!

What are the Application Cases of Smart Sensors?

There are many cases of smart sensors, so let's give you a few examples for your reference.

Tire Pressure Monitor (TPMS):

Tire pressure detectors are now one of the standard equipment for vehicles. This type of sensor must be installed on the tire valve to capture tire pressure data. However, in the case of limited space and high-speed rotating tires, the traditional sensor. The architecture obviously cannot be embedded, but now that technologies such as power supply, sensing, and communication have matured one after another, such applications are already feasible. This smart sensor pursues stable and accurate wireless measurement, and these items are realized in the application of TPMS tire pressure detection.

Tool life detection:

Another common application in recent years is the tool life detection of machine tools. During the operation of machine tools, the tools responsible for cutting objects are easily damaged, and damaged tools will directly affect product quality. Information is grasped through information such as sound and vibration when the machine is in operation. Like the tire pressure detector, the space of the tool sensor is small and the shape is specific, so it is difficult to introduce the traditional measurement framework.

Machinery status monitoring:

As the use time increases, rotating machinery will inevitably suffer from wear and damage. But in industrial applications or factory domains, these devices are often located in places where it is very difficult to install instruments, such as high-temperature steel plants, or even like moving trucks. Smart sensors can integrate vibration measurement and analysis into a small wireless device, which allows users to directly transmit device status data to mobile phones or computers without using bulky instruments.

It can be seen that smart sensors can be said to be a "blue ocean" application pool. Taking advantage of the measurement and embedded systems, the industry can develop information or service systems with higher value.

Published by Dec 15, 2022 Source :TENET TECHNOLOGIES

Further reading

You might also be interested in ...

Headline
Knowledge
Medical Consumables: Global Guardians of Health
Medical consumables are a wide range of products used by healthcare professionals on a daily basis, typically for a single use before being disposed of. Their primary purpose is to ensure patient care, maintain hygiene, and prevent the spread of infection. These items are crucial for everything from routine checkups to complex surgical procedures.
Headline
Knowledge
Closed Suction System: Revolutionizing Respiratory Care
In critical care, airway management is a vital part of sustaining a patient's life. When patients rely on ventilators, clearing respiratory secretions becomes a crucial aspect of daily care. This seemingly simple, yet critically important, procedure has undergone significant evolution over the past few decades, progressing from early open suctioning to today's more advanced and safer Closed Suction System (CSS).
Headline
Knowledge
Understanding Plastic Materials: A Professional Analysis and Application Guide
Plastic materials, due to their diverse properties and wide range of applications, have become indispensable in modern industries and daily life. Choosing the right plastic material for different needs is crucial for optimizing product performance and achieving environmental benefits. The following is a professional review of the characteristics, applications, and pros and cons of the main plastic materials.
Headline
Knowledge
Exploring Rubber Processing Technology: Core and Challenges of Modern Manufacturing
Rubber processing is one of the most critical stages in modern manufacturing. From vehicle tires to industrial equipment seals and various consumer goods, rubber materials are everywhere. As the demand for high-quality and efficient products rises, rubber processing technologies continue to evolve. This article explores the basic knowledge of rubber processing, key technologies, and future trends.
Headline
Knowledge
Understanding the Coffee Robot: A Comprehensive Analysis
This article provides a comprehensive overview of coffee robots—automated machines that brew and serve coffee using advanced robotics and artificial intelligence. It outlines their key features, including AI-driven customization, app connectivity, 24/7 efficiency, and diverse drink options. The report also examines their growing impact on the coffee industry, highlighting benefits for both consumers and businesses such as convenience, consistency, and reduced labor costs. Case studies like CafeXbot, Artly Coffee, and Rozum Café illustrate how coffee robots are reshaping the coffee experience and driving market growth worldwide.
Headline
Knowledge
Understanding PU Foam: Properties, Types, and Industrial Uses
PU foam is no longer merely a cushioning material. It has become a core functional component across sports, medical, fashion, and lifestyle industries. By adjusting density, thickness, and surface feel, PU can meet diverse requirements for breathability, antimicrobial performance, durability, and comfort. It also aligns with brand trends toward eco-friendly formulations and recyclable material solutions.
Headline
Knowledge
Understanding Helical Filters: A Comprehensive Overview
Helical filters are essential components in radio frequency (RF) and microwave engineering, playing a key role in signal filtering and processing. Known for their compact size, high Q-factor, and broad frequency range, these filters are widely used across various industries. This report provides an in-depth look at helical filters, including their structure, operating principles, advantages, limitations, and typical applications.
Headline
Knowledge
Boost Your Device’s Performance: A Guide to Choosing the Right Power Supply
Choosing the right power supply unit (PSU) is crucial for maximizing your device's performance, ensuring stability, and prolonging the lifespan of your components. A PSU is not just a simple component that provides power; it is the heart of your system that ensures each component receives the right amount of power safely and efficiently. This report will guide you through the essential considerations and steps to select the ideal PSU for your needs.
Headline
Knowledge
How to Choose the Ideal Wood Screws for Furniture and Cabinetry
Selecting the right wood screws is essential to building strong, stable, and visually appealing furniture or cabinets. Key factors include screw size, length, thread type, head style, and compatibility with different wood materials. Coarse threads suit softwoods, while fine threads are better for hardwoods. Choosing the proper head type ensures both function and aesthetics, while accounting for environmental changes helps maintain joint integrity. Pre-drilling pilot holes can also prevent splitting, especially in dense wood. By understanding these considerations, woodworkers can achieve durable, high-quality results in their projects.
Headline
Knowledge
How Effective Coolant Management Promotes Sustainable CNC Machining
Sustainable CNC machining increasingly relies on effective coolant management to reduce environmental impact, cut costs, and improve machining performance. Coolants are essential for lubrication, heat control, and chip removal, but improper handling leads to waste and higher expenses. Proper management practices—such as regular monitoring, filtration, recycling, automation, and using eco-friendly coolants—help extend coolant life, maintain machine health, and ensure consistent product quality. Although initial investment may be a barrier, the long-term benefits include cost savings, reduced waste, and enhanced operational efficiency. Future advancements in IoT and AI are expected to further optimize coolant systems, reinforcing sustainability in CNC machining.
Headline
Knowledge
A Complete Guide to Selecting the Ideal Paper Cups for Hot Beverages
This guide provides a detailed overview of how to choose the best paper cups for hot beverages. It explores the different types of cups—single-wall, double-wall, insulated, and eco-friendly—and explains their unique features and ideal use cases. Key factors to consider include beverage temperature, insulation needs, cup size and lid compatibility, environmental impact, and safety standards. The article also outlines best practices for both consumers and businesses to ensure safe use and responsible disposal. Ultimately, selecting the right paper cup depends on balancing functionality, comfort, sustainability, and cost.
Headline
Knowledge
Understanding the Difference Between Reverse Osmosis and Traditional Water Filters
An in-depth comparison between reverse osmosis (RO) and traditional water filters, two widely used methods for purifying drinking water. It outlines how RO uses a semi-permeable membrane to remove dissolved salts, heavy metals, and microorganisms, making it ideal for areas with highly contaminated water. In contrast, traditional filters rely on physical and chemical filtration - often using activated carbon - to improve taste and remove larger particles. While RO systems offer superior contaminant removal, they come with higher costs and water usage. Traditional filters are more affordable and environmentally friendly but less effective against microscopic impurities. The article concludes that the best choice depends on specific water quality needs, and in some cases, combining both systems can offer the most comprehensive solution.
Agree