Indispensable Parts in Integrated Circuits - Transistors
Knowledge

Indispensable Parts in Integrated Circuits - Transistors

A bipolar junction transistor (BJT) is a current-driven semiconductor element that uses a small amount of current to control the flow of a larger electric current. In contrast to a unipolar transistors, such as a field-effect transistors which uses only one kind of charge carrier, a BJT uses both electrons and electron holes as charge carriers. BJT Transistors can be used to amplify weak electrical signals and are also used as oscillators or as switches.
Published: Mar 29, 2022
Indispensable Parts in Integrated Circuits - Transistors

With the rapid development of electronic technology over the past ten years, there has been a huge increase in the use of electronic components in many high-tech industry products. Among these many newly developed electronic components, transistors play the most critical role. Many electronic components are passive components such as resistors, capacitors, and inductors. The reason why they are called passive components is they do not exert an effect on the electronic signal, that is, they do not amplify or change the electronic signal. Components that can exert a change to electronic signals are called active components. Chips are designed to use integrated electronic circuits, (mainly semiconductors transistors) to modulate or switch electronic signals to achieve the desired function. They are key components in many high-tech products.

What is a Transistor?

A transistor is semiconductor device that controls and regulates the flow of electrical signals. By changing the amount of conduction or insulation of an electric current, it can change the voltage or flow of the current. It can perform as either a switch or an amplifier. A key components in most electronic devices today, the transistor was invented in 1947. Many developments have been made with transistors since then, and one major development has been the bipolar junction transistor (BJT).

Parts of the transistor:

Transistors are made up of three layers of semiconductor material (terminals) that connect to external circuits and carry current. Voltage or current applied to two of the terminals of the transistor controls the flow of current passing through one of those terminals and a third terminal.

BJT transistors have the following three terminals:
  • Base: Used to enable current transmission
  • Collector: The positive pole of the transistor
  • Emitter: The negative pole of the transistor

Type of Transistors:

  1. Bipolar Junction Transistor (BJT): In a BJT, the electric current flowing into the transistor controls the devise. The three terminals of a BJT are base, emitter, and collector. A very small current flowing between the base and emitter can control a larger current flowing between the collector and emitter. BJTs include P-N-P transistors and N-P-N transistors. 
  2. Field Effect Transistor (FET): In a FET, the voltage going into the transistor controls the devise. For FET’s, the three terminals are Gate, Source, and Drain. The voltage at the gate terminal can control the current between the source and drain, FET is a unipolar transistor, and can be either an N-channel FET or P-channel FET.  FET’s main applications are in low noise amplifiers, buffer amplifiers, and analog switches.
  3. Other types: There are many types of FET transistors, including MOSFETs, JFETs, ITFETs, FREDFETs, OFEs, and more.
The main function of the BJT transistor:

In a BJT transistor there are two P-N junctions. In the normal operation of a BJT, the base-emitter junction is forward biased and the base-collector junction is reverse-biased, and when current flows through the base-emitter junction, current will flow into the collector circuit. Because the BJT transistor can act as either P-N or N-P, it is also called a NPN transistor.

How does NPN transistors work?

The emitter of an NPN device is made of n-type material, so the majority carriers are electrons. When the base-emitter junction is forward biased, electrons will move from the n-type region to the p-type region, leaving the minority carriers empty. The holes move towards the n-type region. When they meet, they will combine, allowing current to flow through the junction. When the junction is reverse biased, the holes and electrons move away from the junction, and now a depletion region is formed between the two regions, and no current flows through it.

When current flows between the base and emitter, electrons will leave the emitter and flow into the base. Usually, electrons combine when they reach the depletion region. But the low doping level in this region and the thin base means that most electrons can pass through this region without recombining with holes, and the electrons drift toward the collector. By flowing through the effectively reverse-biased junction, the current flows through s the collector circuit.

What are the characteristics of a transistor?

  • Input Characteristics: While keeping the output voltage constant, the input current varies as a function of the input voltage.
  • Output characteristics: While keeping the input current constant, the relationship between the output current and output voltage changes.
  • Current transfer characteristics: While keeping the voltage constant, the output current varies with the input current.
What are the advantages of transistors?
  • Lower cost and smaller size.
  • Less mechanical sensitivity.
  • Low operating voltage.
  • Long life.
  • No power consumption.
  • Switch quickly.
  • More efficient circuits can be developed.
  • Used to develop a single integrated circuit.
What are the limitations of transistors?
  • Transistors lack higher electron mobility.
  • Transistors are easily damaged when electrical and thermal events occur.
  •  Transistors are affected by electronic fields and radiation.

Technological development of transistors:

With the introduction of new equipment for the miniaturization of transistors, the demand for the reduction in size of transistors has increased, as well as the requirements for improvement of component characteristics. With the rapid development of high-tech products, from computers to smartphones, the public has shown a higher and higher demand for the computing speed of chips. This has accelerated the demand for transistors with enhanced performance. In this nano-generation of transistor processing, the introduction of stress technology (strain) has led to changes in material characteristics, increasing the functional density of these devices.

With the evolution of Very-large-scale integration (VLSI) technology, future development of transistors will focus on artificial intelligence (AI). The development of artificial intelligence relies on the machine's self-deep learning technology, big-data analysis, and processing capabilities. Huge databases enable the machine to achieve intelligent responses. 

The development of artificial intelligence requires the processing of huge amounts of data and high-speed computing capabilities. Due to these requirements, the hardware of supercomputers plays an indispensable role in artificial intelligence. Developing of computers with ultra-high-speed computing capabilities will be a focus of future development. 

The Internet of Things (IoT) is also another highly valued application for IC technology. The IoT can connect countless electronic products through the internet for remote control and collection of data. The vast possibilities of these technological developments will only be realized by the continued development of semiconductor electronic components. Therefore, there is still unlimited development potential for transistors in the future.


Published by Mar 29, 2022 Source :official, Source :scitechvista

Further reading

You might also be interested in ...

Headline
Knowledge
Essential for Precision Machining: A Complete Guide to Tungsten Carbide Center Drills
In modern manufacturing, precision is the core standard by which product quality and performance are measured. From aerospace components to medical devices, even a minor deviation can lead to serious consequences. When it comes to precision drilling, a critical challenge is ensuring that a drill bit can be accurately positioned at the start of a cut while maintaining stability during high-intensity operations. The tungsten carbide center drill is the professional tool engineered specifically to solve this problem.
Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Agree