High-Speed Transmission Technology - Universal Serial Bus 4
Knowledge

High-Speed Transmission Technology - Universal Serial Bus 4

The demand for high-speed transmission is increasing day by day, which has promoted the rapid development of USB (Universal Serial Bus) technology in recent years. The introduction of a central processing unit (CPU) that supports USB4 symbolizes that USB technology has entered a new era.
Published: Nov 16, 2022
High-Speed Transmission Technology - Universal Serial Bus 4

The Era of High-Speed Transmission:

Whether you use a professional-grade camera or video camera, or a smartphone, the quality of photos and videos produced by various devices is getting higher and higher. This not only increases the storage capacity requirements if you take a 4K, or 8K Waiting for ultra-high-quality videos to be uploaded for hours or even a day may not meet the needs of modern people. Such a trend encourages various transmission technologies to keep pace with the times with a view to future demands, and USB4 and Thunderbolt 4 have also taken advantage of this trend, and have gradually attracted the attention and attention of the industry in recent years.

The development path of USB4 is very different from the previous USB because it is based on the transmission interface standard developed by Intel's Thunderbolt 3. In the past, USB 2.0, USB 3.0, and other technologies were jointly formulated by many manufacturers, but USB4 set a relatively high threshold.

USB4 is based on the Thunderbolt protocol, and because of this it also has speeds up to 40Gbps. It's backward compatible with USB 3.2 and even USB 2.0. However, you'll need a USB 4 adapter (to a USB 3.2 or USB 2.0 connector), since USB 4 uses a USB-C connector.

Unlike Thunderbolt 4, USB 4 does not support dual monitors. USB4 supports DisplayPort 2.0, capable of outputting video at 8K or even 16K resolution at 60Hz. But unlike Thunderbolt 4, it doesn't support dual monitors. DisplayPort 2.0 can use speeds up to 80Gbps because it only transmits data in one direction (the display). USB 4 is as fast as Thunderbolt 4 and fast enough to connect an external GPU (graphics card). It has a power delivery of 60W, as opposed to Thunderbolt 4's 100W.

What is Universal Serial Bus 4 (USB4)?

USB4 is the USB system specified in the USB4 specification, version 1.0 of which was released in August 2019 by the USB Developers Forum. Unlike previous USB protocol standards, USB4 requires a USB-C connector and requires USB PD support for power. Compared to USB 3.2, it allows DisplayPort and PCI Express tunneling.

This architecture defines a method for dynamically sharing a single high-speed link with multiple end-device types that best handles data transfers by type and application. USB4 products must support 20 Gbit/s throughputs and can support 40 Gbit/s throughputs. But because of the tunneling, when transferring mixed data, even at only 20 Gbit/s, the actual data transfer rate may be higher than USB 3.2. The USB4 specification is based on the Thunderbolt 3 protocol specification.

The Universal Serial Bus has been around since 1996 intending to standardize the connection of external devices to PCs. The function of USB4 breaks away from the upgrade of the original USB that only does data transmission. For users, one line in the future will have the opportunity to perform data transmission, audio, and video transmission, PCIe, charging, etc., and it is compatible with previous generations of USB. It can be used if necessary. Compatible with Thunderbolt 3, the convenience is greatly improved. However, more functions mean that the internal structure is more complicated than before, and more silicon intellectual property (IP) is required device side, and other control IC design thresholds.

The upgrade of USB4 further expands the application area. In the past, USB to PCIe was mostly used in high-speed storage devices such as SSDs. Now, USB4 uses Tunneling technology to connect external network cards or graphics cards. A large amount of company data can also be quickly transferred through USB4.

What is the USB4 Specification?

  • Design goals:
    The goal articulated in the USB4 specification is higher transmission bandwidth, helping to integrate the USB-C connector ecosystem and minimizing end-user confusion. Some key areas to achieve this are using a single type of USB-C connector while maintaining compatibility with existing USB and Thunderbolt products.
  • Data transmission method:
    USB4 itself does not provide any general data transfer mechanism or device class but is mainly used to provide tunneling to transfer other protocols (such as USB 3.2, DisplayPort, and optional PCIe). Although it does provide a native host-to-host protocol. It is only available between two connected hosts and is used to implement host IP networking. Therefore, when the host and device do not support optional PCIe tunneling, the maximum non-display bandwidth is limited to USB 3.2 20Gbps, and only USB 3.2 10Gbps is mandatory.
  • USB4 supports the following tunneling protocols:
    • USB 3.2 Enhanced SuperSpeed Tunnel
    • Tunneling over DisplayPort 1.4a
    • Based on PCI Express (PCIe Tunneling)
    • USB4 needs to support DisplayPort Alternate Mode (alternative mode). So, DisplayPort signals can be sent using USB4 tunneling or this alternative mode.
    • The dedicated cable in the USB-C connector always supports USB 2.0.
  • Data transfer mode support:
    Some transfer modes are supported by all USB4 devices, but USB4 support for other transfer modes is optional. It depends on the type of device.
Published by Nov 16, 2022 Source :eettaiwan

Further reading

You might also be interested in ...

Headline
Knowledge
Essential for Precision Machining: A Complete Guide to Tungsten Carbide Center Drills
In modern manufacturing, precision is the core standard by which product quality and performance are measured. From aerospace components to medical devices, even a minor deviation can lead to serious consequences. When it comes to precision drilling, a critical challenge is ensuring that a drill bit can be accurately positioned at the start of a cut while maintaining stability during high-intensity operations. The tungsten carbide center drill is the professional tool engineered specifically to solve this problem.
Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Agree