What is Motion Control?
Knowledge

What is Motion Control?

Motion control (MC) is a branch of automation. It uses some equipment commonly known as servo mechanisms such as hydraulic pumps, linear actuators, or motors to control the position or speed of the machine.
Published: Mar 24, 2021
What is Motion Control?

What is Motion Control?

The application of motion control in the field of robots and CNC machine tools is more complicated than the application in special machines because the latter has a simpler motion form and is usually called general motion control (GMC). Motion control is widely used in packaging, printing, textile, and assembly industries.

Motion controller looks at motion control, the difference between motor control and motion control.

In the field of industrial control and automation, what exactly does motion control mean?

In summary, motion control is mainly divided into two directions, one is a motion control, which is usually used in the mechanical field; the other is process control, which is usually used in the chemical industry. And motion control refers to a kind of servo system that originated in the early days, based on the control of the motor, to realize the control of the change of the angular displacement, torque, speed, and other physical quantities of the object.

The difference between motor control and motion control:

In the above definition, motor control is mentioned, but motor control and motion control are different. From the point of concern, motor control (herein referred to as a servo motor) is mainly concerned with controlling one or more of the torque, speed, and position of a single motor to a given value. The focus of motion control is to coordinate multiple motors to complete the specified motion (composite trajectory, composite speed), and focus more on trajectory planning, speed planning, and kinematics conversion; for example, CNC machine tools need to coordinate XYZ axis motors to complete interpolation action.

Motor control is often used as a link of the motion control system (usually a current loop, working in torque mode), and it focuses more on the control of the motor. It generally includes three control loops: position control, speed control, and torque control. Generally, there is no plan. (Some drives have simple position and speed planning capabilities); motion control is often for products, including mechanical, software, electrical, and other modules, such as robots, drones, motion platforms, etc., which are for mechanical motion the position and speed of the components are controlled and managed in real-time so that they can be controlled following the expected motion trajectory and prescribed motion parameters.

Part of motor control and motion control overlap: the position loop/speed loop/torque loop can be implemented in the drive of the motor or the motion controller, so the two are easy to confuse.

The basic structure of the motion control system

The basic structure of a motion control system includes a motion controller: used to generate track points (desired output) and close the position feedback loop. Many controllers can also close a speed loop internally.

Motion controllers are mainly divided into three categories, namely PC-Based, dedicated controllers, and PLC. Among them, PC-Based motion controllers are widely used in electronics, EMS, and other industries; the representative industries of dedicated controllers are wind power, photovoltaics, robots, molding machinery, etc.; PLC is favored in rubber, automotive, metal metallurgy, and other industries.

Drive or amplifier: used to convert the control signal from the motion controller into a higher power current or voltage signal. The more advanced intelligent drive can close the position loop and speed loop by itself to obtain more precise control.

Actuators: such as hydraulic pumps, cylinders, linear actuators, or motors to output motion. Feedback sensor: such as photoelectric encoder, resolver, or Hall effect device, etc., used to feedback the position of the actuator to the position controller to realize the closure of the position control loop.
Numerous mechanical components are used to convert the motion form of the actuator into the desired motion form, including gearboxes, shafts, ball screws, toothed belts, couplings, and linear and rotary bearings.

Look at motion control from a motion controller

The emergence of motion control has promoted electromechanical control solutions. For example, in the past, both cams and gears needed to be realized by mechanical structures. Now they can be realized by electronic cams and electronic gears, which eliminates the return, friction, and wear of the mechanical realization process.

Mature and stable motion control products not only need to provide path planning, forward-looking control, motion coordination, interpolation, kinematics forward and inverse solutions, and drive motor command output, but also need to have engineering configuration software, syntax interpreter, and simple PLC Function, PID control algorithm realization, HMI interactive interface, fault diagnosis interface, advanced motion controller can also realize safety control and so on.

The development trend of motion control technology and market

According to the market research report released by Markets and Markets, the global motion control market (including spare parts: AC motors, motors, motion controllers, AC drives, electronic drives; applications: packaging, material processing, metal processing, conversion, positioning) is expected to be Reached 22.84 billion U.S. dollars, growing at a compound annual growth rate of 5.5% between 2016 and 2022.

As far as motion controllers are concerned, with the expansion of industry applications, China's motion control market has gradually matured. Good development has been achieved in most downstream machinery industries such as machine tools, engraving machines, semiconductors, industrial robots, EMS, and material handling. Especially in industries such as lithium batteries, industrial robots, semiconductors, and EMS, European, American, and Japanese motion control manufacturers have outstanding performance and have strong comprehensive competitive advantages.

Since the goal of motion control is to complete the production line process to manufacture products, the motion control process in the middle is not the most important, but how to meet the requirements correctly and in real-time is the most important function; plus, various products now The requirements for precision are getting higher and higher, and the requirements for the manufacturing process are getting more and more stringent. Motion control emphasizes real-time and precision. To achieve optimization, various related technologies must be integrated. Such integration is regarded as the most difficult control technology.

Dedicated controllers will remain the main type of motion controller in the industrial robot industry for a while. The PC-Based motion control market in the semiconductor industry is developing steadily, with a growth rate of about 17%. The increasing demand for machine vision functions in the logistics industry has led to a gradual increase in the proportion of PC-Based. The traditional printing machinery is still dominated by PLC motion controllers. The application of PC-Based motion controllers has just started. It is used more in emerging digital printing machinery and will grow slightly in the future. According to expert analysis and prediction, the market demand for motion controllers will become larger and larger in the next few years, which will be one of the foundations of future industrial development.

Published by Mar 24, 2021 Source :kknews

Further reading

You might also be interested in ...

Headline
Knowledge
Medical Consumables: Global Guardians of Health
Medical consumables are a wide range of products used by healthcare professionals on a daily basis, typically for a single use before being disposed of. Their primary purpose is to ensure patient care, maintain hygiene, and prevent the spread of infection. These items are crucial for everything from routine checkups to complex surgical procedures.
Headline
Knowledge
Closed Suction System: Revolutionizing Respiratory Care
In critical care, airway management is a vital part of sustaining a patient's life. When patients rely on ventilators, clearing respiratory secretions becomes a crucial aspect of daily care. This seemingly simple, yet critically important, procedure has undergone significant evolution over the past few decades, progressing from early open suctioning to today's more advanced and safer Closed Suction System (CSS).
Headline
Knowledge
Understanding Plastic Materials: A Professional Analysis and Application Guide
Plastic materials, due to their diverse properties and wide range of applications, have become indispensable in modern industries and daily life. Choosing the right plastic material for different needs is crucial for optimizing product performance and achieving environmental benefits. The following is a professional review of the characteristics, applications, and pros and cons of the main plastic materials.
Headline
Knowledge
Exploring Rubber Processing Technology: Core and Challenges of Modern Manufacturing
Rubber processing is one of the most critical stages in modern manufacturing. From vehicle tires to industrial equipment seals and various consumer goods, rubber materials are everywhere. As the demand for high-quality and efficient products rises, rubber processing technologies continue to evolve. This article explores the basic knowledge of rubber processing, key technologies, and future trends.
Headline
Knowledge
Understanding the Coffee Robot: A Comprehensive Analysis
This article provides a comprehensive overview of coffee robots—automated machines that brew and serve coffee using advanced robotics and artificial intelligence. It outlines their key features, including AI-driven customization, app connectivity, 24/7 efficiency, and diverse drink options. The report also examines their growing impact on the coffee industry, highlighting benefits for both consumers and businesses such as convenience, consistency, and reduced labor costs. Case studies like CafeXbot, Artly Coffee, and Rozum Café illustrate how coffee robots are reshaping the coffee experience and driving market growth worldwide.
Headline
Knowledge
Understanding PU Foam: Properties, Types, and Industrial Uses
PU foam is no longer merely a cushioning material. It has become a core functional component across sports, medical, fashion, and lifestyle industries. By adjusting density, thickness, and surface feel, PU can meet diverse requirements for breathability, antimicrobial performance, durability, and comfort. It also aligns with brand trends toward eco-friendly formulations and recyclable material solutions.
Headline
Knowledge
Understanding Helical Filters: A Comprehensive Overview
Helical filters are essential components in radio frequency (RF) and microwave engineering, playing a key role in signal filtering and processing. Known for their compact size, high Q-factor, and broad frequency range, these filters are widely used across various industries. This report provides an in-depth look at helical filters, including their structure, operating principles, advantages, limitations, and typical applications.
Headline
Knowledge
Boost Your Device’s Performance: A Guide to Choosing the Right Power Supply
Choosing the right power supply unit (PSU) is crucial for maximizing your device's performance, ensuring stability, and prolonging the lifespan of your components. A PSU is not just a simple component that provides power; it is the heart of your system that ensures each component receives the right amount of power safely and efficiently. This report will guide you through the essential considerations and steps to select the ideal PSU for your needs.
Headline
Knowledge
How to Choose the Ideal Wood Screws for Furniture and Cabinetry
Selecting the right wood screws is essential to building strong, stable, and visually appealing furniture or cabinets. Key factors include screw size, length, thread type, head style, and compatibility with different wood materials. Coarse threads suit softwoods, while fine threads are better for hardwoods. Choosing the proper head type ensures both function and aesthetics, while accounting for environmental changes helps maintain joint integrity. Pre-drilling pilot holes can also prevent splitting, especially in dense wood. By understanding these considerations, woodworkers can achieve durable, high-quality results in their projects.
Headline
Knowledge
How Effective Coolant Management Promotes Sustainable CNC Machining
Sustainable CNC machining increasingly relies on effective coolant management to reduce environmental impact, cut costs, and improve machining performance. Coolants are essential for lubrication, heat control, and chip removal, but improper handling leads to waste and higher expenses. Proper management practices—such as regular monitoring, filtration, recycling, automation, and using eco-friendly coolants—help extend coolant life, maintain machine health, and ensure consistent product quality. Although initial investment may be a barrier, the long-term benefits include cost savings, reduced waste, and enhanced operational efficiency. Future advancements in IoT and AI are expected to further optimize coolant systems, reinforcing sustainability in CNC machining.
Headline
Knowledge
A Complete Guide to Selecting the Ideal Paper Cups for Hot Beverages
This guide provides a detailed overview of how to choose the best paper cups for hot beverages. It explores the different types of cups—single-wall, double-wall, insulated, and eco-friendly—and explains their unique features and ideal use cases. Key factors to consider include beverage temperature, insulation needs, cup size and lid compatibility, environmental impact, and safety standards. The article also outlines best practices for both consumers and businesses to ensure safe use and responsible disposal. Ultimately, selecting the right paper cup depends on balancing functionality, comfort, sustainability, and cost.
Headline
Knowledge
Understanding the Difference Between Reverse Osmosis and Traditional Water Filters
An in-depth comparison between reverse osmosis (RO) and traditional water filters, two widely used methods for purifying drinking water. It outlines how RO uses a semi-permeable membrane to remove dissolved salts, heavy metals, and microorganisms, making it ideal for areas with highly contaminated water. In contrast, traditional filters rely on physical and chemical filtration - often using activated carbon - to improve taste and remove larger particles. While RO systems offer superior contaminant removal, they come with higher costs and water usage. Traditional filters are more affordable and environmentally friendly but less effective against microscopic impurities. The article concludes that the best choice depends on specific water quality needs, and in some cases, combining both systems can offer the most comprehensive solution.
Agree