What is Object Detection?
Knowledge

What is Object Detection?

Object detection has long been an application of computer vision plus machine learning to detect certain classes of semantic objects in digital images and videos.
Published: Sep 26, 2022
What is Object Detection?

What is Object Detection?

Object detection technology usually refers to detecting the position and corresponding category of an object in an image. It is a basic task, and image segmentation, object tracking, key point detection, etc. Object detection is a computer technology related to computer vision and image processing. A well-studied area of object detection includes face detection and peer detection. Object detection has applications in many fields, including computer vision, image retrieval, and video surveillance.

In object recognition, it is necessary to distinguish what objects are in the picture, the input is the picture, and the output is the category label and probability. The object detection algorithm not only needs to detect what objects are in the picture but also outputs the outer frame (x, y, width, height) of the object to locate the position.

Object detection is to accurately find the location of the object in each picture and mark the category of the object. The size of the object varies widely, the angle and posture of the object are uncertain, and it can appear anywhere in the picture, not to mention that the object can be of multiple categories.

The Difference Between Image Classification, Object Detection, and Image Segmentation:

  • Image classification: The input image often contains only one object, and the purpose is to determine what object each image is. It is an image-level task, which is relatively simple and has the fastest development.
  • Object detection: There are often many objects in the input image, and the purpose is to determine the location and category of the object, which is a core task in computer vision.
  • Image segmentation: The input is like object detection, but it is necessary to determine which category each pixel belongs to, which belongs to the pixel-level classification. There are many connections between image segmentation and object detection tasks, and models can learn from each other.

The Difference Between Traditional and Deep Learning Object Detection:

  • Traditional object detection: Traditional object detection, before deep learning is not involved, is usually divided into three stages: region selection, feature extraction, and feature classification.
    • Region selection: Select the position of the object that may appear in the image. Since the position and size of the object are not fixed, the traditional algorithm usually uses the sliding windows algorithm, but this algorithm will have many redundant frames and the computational complexity is high.
    • Feature extraction: After the object position is obtained, a manually designed extractor is usually used for feature extraction. The quality of feature extraction is not high because the extractor contains fewer parameters and is less robust by human design.
    • Feature classification: Classify the features obtained in the previous step, usually using classifiers such as SVM and AdaBoost.
  • Object Detection with Deep Learning: The large number of parameters of the deep neural network can extract features with better robustness and semantics, and the classifier performance is better.

The Difference Between Object Detection and Other Computer Vision Problems:

The difference between computer vision and image recognition classification is that image recognition classification provides localization positioning operations, while object detection includes two tasks localization and classification. In the real world, more object detection techniques can be used, because the photos taken are of high complexity and there may be multiple target objects. The identification classification task can only identify one of the more significant ones, and the object detection task can identify multiple ones.

Going a step further from object detection, it is desirable not only to find objects in the image but also to find the pixel mask for each detected object, a problem called Instance Segmentation.

Object Detection Performance Indicators for Object Detection:

  • Intersection over Union (IoU): The IoU measures the overlap between the candidate frame selected by the model and the actual frame, which also represents the accuracy of the candidate frame selected by the model. It is a value between 0 and 1. Usually, a threshold is set in practice to set the accuracy of the candidate frame selected by the model. Candidate boxes that do not reach the iou threshold are discarded. The most used threshold is 0.5, that is, if loU>0.5, it is considered true detection, otherwise it is considered as false detection.
  • mean Average Precision (mAP): MAP = Sum of mean precisions of all classes divided by all classes, i.e., the mean of mean precisions of all classes in the dataset. In binary classification, the mean precision (AP) measure is a summary of the precision-recall curve, and MAP = the sum of mean precision over all classes / all classes, which is the average of the mean precisions of all classes in the dataset. Taking the average means that mAP avoids detecting strong in some classes and weak in others.
    mAP is usually computed for a fixed IoU, but many bounding boxes can increase the number of candidate boxes. Calculates the mean of mAP of variable IoU values to penalize many candidate boxes with misclassification.

The Main Algorithm of Object Detection:

  • Traditional target detection algorithm: Cascade + HOG/DPM + Haar/SVM and many improvements and optimizations of the above methods.
  • Deep learning algorithm: Target detection algorithms are mainly based on deep learning models, which can be divided into two categories:
    • Two-stage detection algorithm: Divide the detection problem into two stages, first generate region proposals, and then classify the candidate regions (generally need to refine the position). The typical representative of this type of algorithm is the R-CNN algorithm based on region proposal, such as R -CNN, Fast R-CNN, Faster R-CNN, etc.
    • One-stage detection algorithm: There is no need for the region proposal stage, and the category probability and position coordinate value of the object is directly generated, which are more typical algorithms such as YOLO and SSD.
      The performance indicators of the target detection model are detection accuracy and speed. For accuracy, the target detection should consider the positioning accuracy of the object, not just the classification accuracy. In general, the two-stage algorithm has an advantage in accuracy, while the one-stage algorithm has a speed advantage. However, with the development of research, both types of algorithms have been improved and improved.
Published by Sep 26, 2022 Source :796t

Further reading

You might also be interested in ...

Headline
Knowledge
Medical Consumables: Global Guardians of Health
Medical consumables are a wide range of products used by healthcare professionals on a daily basis, typically for a single use before being disposed of. Their primary purpose is to ensure patient care, maintain hygiene, and prevent the spread of infection. These items are crucial for everything from routine checkups to complex surgical procedures.
Headline
Knowledge
Closed Suction System: Revolutionizing Respiratory Care
In critical care, airway management is a vital part of sustaining a patient's life. When patients rely on ventilators, clearing respiratory secretions becomes a crucial aspect of daily care. This seemingly simple, yet critically important, procedure has undergone significant evolution over the past few decades, progressing from early open suctioning to today's more advanced and safer Closed Suction System (CSS).
Headline
Knowledge
Understanding Plastic Materials: A Professional Analysis and Application Guide
Plastic materials, due to their diverse properties and wide range of applications, have become indispensable in modern industries and daily life. Choosing the right plastic material for different needs is crucial for optimizing product performance and achieving environmental benefits. The following is a professional review of the characteristics, applications, and pros and cons of the main plastic materials.
Headline
Knowledge
Exploring Rubber Processing Technology: Core and Challenges of Modern Manufacturing
Rubber processing is one of the most critical stages in modern manufacturing. From vehicle tires to industrial equipment seals and various consumer goods, rubber materials are everywhere. As the demand for high-quality and efficient products rises, rubber processing technologies continue to evolve. This article explores the basic knowledge of rubber processing, key technologies, and future trends.
Headline
Knowledge
Understanding the Coffee Robot: A Comprehensive Analysis
This article provides a comprehensive overview of coffee robots—automated machines that brew and serve coffee using advanced robotics and artificial intelligence. It outlines their key features, including AI-driven customization, app connectivity, 24/7 efficiency, and diverse drink options. The report also examines their growing impact on the coffee industry, highlighting benefits for both consumers and businesses such as convenience, consistency, and reduced labor costs. Case studies like CafeXbot, Artly Coffee, and Rozum Café illustrate how coffee robots are reshaping the coffee experience and driving market growth worldwide.
Headline
Knowledge
Understanding PU Foam: Properties, Types, and Industrial Uses
PU foam is no longer merely a cushioning material. It has become a core functional component across sports, medical, fashion, and lifestyle industries. By adjusting density, thickness, and surface feel, PU can meet diverse requirements for breathability, antimicrobial performance, durability, and comfort. It also aligns with brand trends toward eco-friendly formulations and recyclable material solutions.
Headline
Knowledge
Understanding Helical Filters: A Comprehensive Overview
Helical filters are essential components in radio frequency (RF) and microwave engineering, playing a key role in signal filtering and processing. Known for their compact size, high Q-factor, and broad frequency range, these filters are widely used across various industries. This report provides an in-depth look at helical filters, including their structure, operating principles, advantages, limitations, and typical applications.
Headline
Knowledge
Boost Your Device’s Performance: A Guide to Choosing the Right Power Supply
Choosing the right power supply unit (PSU) is crucial for maximizing your device's performance, ensuring stability, and prolonging the lifespan of your components. A PSU is not just a simple component that provides power; it is the heart of your system that ensures each component receives the right amount of power safely and efficiently. This report will guide you through the essential considerations and steps to select the ideal PSU for your needs.
Headline
Knowledge
How to Choose the Ideal Wood Screws for Furniture and Cabinetry
Selecting the right wood screws is essential to building strong, stable, and visually appealing furniture or cabinets. Key factors include screw size, length, thread type, head style, and compatibility with different wood materials. Coarse threads suit softwoods, while fine threads are better for hardwoods. Choosing the proper head type ensures both function and aesthetics, while accounting for environmental changes helps maintain joint integrity. Pre-drilling pilot holes can also prevent splitting, especially in dense wood. By understanding these considerations, woodworkers can achieve durable, high-quality results in their projects.
Headline
Knowledge
How Effective Coolant Management Promotes Sustainable CNC Machining
Sustainable CNC machining increasingly relies on effective coolant management to reduce environmental impact, cut costs, and improve machining performance. Coolants are essential for lubrication, heat control, and chip removal, but improper handling leads to waste and higher expenses. Proper management practices—such as regular monitoring, filtration, recycling, automation, and using eco-friendly coolants—help extend coolant life, maintain machine health, and ensure consistent product quality. Although initial investment may be a barrier, the long-term benefits include cost savings, reduced waste, and enhanced operational efficiency. Future advancements in IoT and AI are expected to further optimize coolant systems, reinforcing sustainability in CNC machining.
Headline
Knowledge
A Complete Guide to Selecting the Ideal Paper Cups for Hot Beverages
This guide provides a detailed overview of how to choose the best paper cups for hot beverages. It explores the different types of cups—single-wall, double-wall, insulated, and eco-friendly—and explains their unique features and ideal use cases. Key factors to consider include beverage temperature, insulation needs, cup size and lid compatibility, environmental impact, and safety standards. The article also outlines best practices for both consumers and businesses to ensure safe use and responsible disposal. Ultimately, selecting the right paper cup depends on balancing functionality, comfort, sustainability, and cost.
Headline
Knowledge
Understanding the Difference Between Reverse Osmosis and Traditional Water Filters
An in-depth comparison between reverse osmosis (RO) and traditional water filters, two widely used methods for purifying drinking water. It outlines how RO uses a semi-permeable membrane to remove dissolved salts, heavy metals, and microorganisms, making it ideal for areas with highly contaminated water. In contrast, traditional filters rely on physical and chemical filtration - often using activated carbon - to improve taste and remove larger particles. While RO systems offer superior contaminant removal, they come with higher costs and water usage. Traditional filters are more affordable and environmentally friendly but less effective against microscopic impurities. The article concludes that the best choice depends on specific water quality needs, and in some cases, combining both systems can offer the most comprehensive solution.
Agree