Application of High-Pressure Processing Technology in Agricultural Food
Knowledge

Application of High-Pressure Processing Technology in Agricultural Food

Food safety issues have always been the focus of social concern, and various countries and organizations have also put forward relevant food safety regulations and testing standards to ensure the health and safety of food processing and food processing technology engaged with it.
Published: Sep 10, 2021
Application of High-Pressure Processing Technology in Agricultural Food

Food Processing Industry

Food safety issues have always been the focus of social attention, and the public sees the importance of the need for food safety and control. The food processing industries pay close attention to the supervision of food safety, as it helps promote the improvement and development of food processing technology.

Traditional agricultural foods often use various processing methods such as high-temperature heating, drying, and the use of food additives to sterilize or inhibit the growth of microorganisms. This will extend the shelf life and improve the different flavors and shapes of the products. The texture, taste, and nutrients of natural food materials will be preserved. High-pressure processing technology (HPP processing) is a non-heat treatment, food processing technology. It is applied to the processing of agricultural products. In addition to reducing the loss of nutritional value, functional ingredients, and freshness during the sterilization process, it can also remove harmful pathogens and improve the safety and preservation of agricultural foods. Thus, HPP food processing is an easy to use and effective processing method.

What Is High-Pressure Processing Technology?

HPP processing is a novel, non-thermal food processing technology that seals the food in a soft packaging material at room temperature. Microbes and enzymes in the food are destroyed at an ultra-high pressure of 100-600MPa. Live, high-pressure processed food can maintain the original flavor and nutritional value, extend the shelf life of cold storage, and have the same level of food safety as traditional heat sterilization methods. It has been listed by the US Food and Drug Administration as a substitute for Pasteurization's non-pasteurization technology.

A. Principles of high-pressure processing technology

The application principle of high-pressure processing technology is to place sealed or packaged food in a closed, heat-insulated container and use liquid as the pressure transmission medium (water) to apply an ultra-high pressure of 100-600MPa at room temperature. The pressure is uniform so achieves uniform sterilization. The sterilization effect is not affected by the shape and size of the packaging, so foods of different sizes can be processed in the same batch. The microbiological safety of the food can be maintained without adding preservatives, and the food can be further processed. Products retain the natural flavor and nutritional value of the original ingredients, so high-pressure processing technology can be called a light processing technology. Compared with traditional thermal processing technology, high-pressure processing technology operates at room temperature, avoiding energy consumption for heating and subsequent cooling. The food is in packaged form and will not directly contact the processing equipment, avoiding secondary contamination after sterilization. The pressure transmission medium can also be recycled and reused after processing. HPP has the advantages of low energy consumption and low pollution, so is a relatively friendly processing technology for the environment.

B. Development and application of high-pressure processing technology

High-pressure processing technology was discovered when researchers found that egg protein will coagulate under high pressure. High pressure can destroy or form non-covalent bonds such as hydrogen bonds, ionic bonds, and hydrophobic bonds in agricultural food ingredients. The mechanism of sterilization includes the destruction of microbial cell membranes, denaturation of proteins required for microbial growth, destruction of DNA transcription, and solidification of phospholipids on cell membranes, etc. Major changes in the growing microbial cells will have sterilization effects on agricultural food. These effects include enzyme inactivation, starch gelatinization, and a reduction of microbial activity, thereby extending the product's shelf life.

High-pressure processing technology mainly uses liquid as the medium to transfer pressure. Agricultural food that has been sealed and packaged is subjected to physical sterilization in an ultra-high-pressure environment with appropriate temperature and time. Compared with heat sterilization technology, high-pressure sterilization is more effective and the physical properties of the product are kept relatively intact. It has very little effect on vitamin destruction, foreign body formation or texture.

In advanced countries such as Europe and the United States, high-pressure processing technology has long been used in various processed foods, including ham, smoked beef bacon, and sausages. Aquatic products include oysters, lobsters, cod, and shellfish. The United States uses High-pressure sterilization in vegetable and fruit products, including guacamole and sauces. High-pressure sterilization products such as soy products, jams, and juices have been launched. At present, industries in Taiwan's have introduced high-pressure processing technology in the processing of vegetable juice, OEM meat products, and other customized processed products.

C. Application limitations of high-pressure processing technology

Although high-pressure sterilization has good prospects in agricultural food processing, it also has potential limitations. For example, high-pressure sterilization can only inhibit part of the enzyme activity and foods must be stored at a low temperature to extend its shelf life. High-pressure sterilization for products with low water content gives poor sterilization. It must be combined with other preservation techniques such as high sugar and high salt to achieve significant effects. High-pressure sterilization cannot produce a browning aroma or appearance. For some products, it cannot provide sensory effects to improve appearance and smell. 

Food Science and Technology Development

The application of high-pressure processing technology is a new challenge for food research and development personnel, whether it is the basic principle of sterilization, the design and verification of sterilization conditions, the control of the impact on product quality, the maintenance and repair of equipment, or even cost control. However, high-pressure sterilization technology can meet the needs of the industry in the improving of product quality and safety, and prolonging storage lifetime. Whether it is cooked food or fresh food, there are many opportunities for innovation.

In recent years, global health awareness has risen, and foods tend to be healthy and additive-free. HPP processing sterilization can achieve sterilization and retain flavor and nutrition. This technology has also brought potential for development in the fresh food and food technology industry. By introducing various novel processing technologies and preservation methods, such as high-pressure processing and sterilization, and developing innovative products to meet consumer demand, HPP will help product market segmentation and create revenue growth in the food processing and sales market.

Published by Sep 10, 2021 Source :coa, Source :kfs

Further reading

You might also be interested in ...

Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Headline
Knowledge
The Power of Color: How the Printing Industry Protects Brand Quality
In the printing industry, color has always been a core element influencing both quality and sensory experience. Whether in packaging, advertising, or publications, color accuracy directly affects consumer perception and trust in a brand. With the rise of digitalization and globalization, companies increasingly demand brand consistency, making color management more than just an aesthetic concern—it is a safeguard for printing quality and brand value. This article explores the importance of color management, the application of ICC color calibration, and Pantone’s role in brand identity, providing a comprehensive overview of the core knowledge and practical value of color management in printing.
Headline
Knowledge
Is Your Paper Box Truly Recyclable? The Secrets of Composite Packaging
Imagine a typical morning, a warm drink in your hands, held in what looks like an eco-friendly paper cup. You think to yourself, "At least it's not plastic. It must be better for the environment." But have you ever wondered how that paper container holds a hot liquid without leaking? Can it really be recycled with ease? The truth is, there are hidden secrets about packaging materials you may not know.
Headline
Knowledge
How CNC Technology Ensures the Invisible Safety of Flight
The aerospace industry demands extremely high standards for component precision, lightweight design, and durability, and CNC (Computer Numerical Control) technology is a key enabler to meet these requirements. It is widely used in the production of critical parts such as turbine blades, airframe structures, and landing gear. With the global aerospace market expected to grow from USD 900 billion in 2023 to USD 1.2 trillion by 2030 (CAGR ~4.2%), CNC technology, with its micron-level precision and automation capabilities, not only helps improve aircraft fuel efficiency by around 10% but also ensures all components comply with the stringent AS9100D certification standards, making flight safer and more reliable.
Agree