LIDAR technology indispensable for autonomous vehicles
Knowledge

LIDAR technology indispensable for autonomous vehicles

LIDAR (a combination of light and radar) is an indispensable component of many autonomous vehicles. It measures distance through light and becomes the eyes of autonomous vehicles.
Published: May 24, 2021
LIDAR technology indispensable for autonomous vehicles

What is LiDAR technology?

The working principle of LiDAR

Lidar measures the flight time of light pulses, which can then determine the distance between the sensor and the object. Imagine starting the stopwatch when a light pulse is emitted, and then stopping the timer when the light pulse (reflected from the first object encountered) returns; by measuring the "time of flight" of the laser and knowing the speed of the pulse, you can calculate the distance. Light travels at a speed of 300,000 kilometers per second, so very high-precision devices are required to generate distance information.

Use a laser as a "stick" to measure the distance
To generate a complete point cloud, the sensor must be able to sample the entire environment very quickly. LiDAR uses a very high sampling rate on a single transmitter/receiver, and each transmitter emits tens or hundreds of thousands of laser pulses per second. This means that as many as 100,000 laser pulses complete the round trip from the transmitter on the laser unit to the object to be measured within 1 second, and return to the receiver located near the transmitter on the lidar. Larger systems have up to 64 such transmitters/receivers (it is called a line). Multi-line enables the system to generate more than one million data points per second.
However, 64 fixed lines are not enough to map the entire environment-it just gives a very clear resolution in a very concentrated area. Due to the precision required in optics, it is very expensive to make more wires, so if the number of wires exceeds 64, continuing to increase the number of wires will increase the cost more rapidly. In contrast, many LiDAR systems use rotating components or rotating mirrors to scan the line 360 degrees around the environment.

Common strategies include deflecting individual transmitters and receivers up or down to increase the laser's field of view. For example, Velodyne's 64-lane LiDAR system has a vertical viewing angle of 26.8 degrees (it has a 360-degree horizontal viewing angle through rotation). This LiDAR can see the top of a 12-meter-high object from 50 meters away.

Corresponding to the different lines of LiDAR, there are different sharpness bands, this is because the data facsimile decreases with distance. Although it is not perfect, higher resolutions can be used for closer objects, because as the distance to the sensor increases, the angle between the transmitters (for example, 2 degrees) will cause the spacing between these dot bands to be bigger.

The problems LiDAR needs to overcome
  1. The material of the reflective surface
    Since LiDAR is based on the measurement of the time required for the laser pulse to return to the sensor, if the laser hits a highly reflective surface, this will cause problems for the measurement. From a microscopic point of view, most materials have rough surfaces and scatter light in all directions; a small part of this scattered light can always return to the sensor and is sufficient to generate distance data. However, if the surface reflectivity is very high, the light will scatter away from the sensor, then the point cloud in this area cannot be detected, and the data will be incomplete.
  2. The environment in the air
    The environment in the air can also affect the LiDAR readings. Heavy fog and heavy rain will weaken the emitted laser pulse and affect LiDAR. To solve these problems, higher-power lasers have been put into use, but it is not a good solution for smaller, mobile, or power-sensitive application scenarios.
  3. Data update rate during rotation
    Another challenge facing the LiDAR system is the relatively slow update rate when rotating. The update rate of the system is limited by the rotation speed of the complex optics. The fastest rotation rate of the LiDAR system is about 10Hz, which limits the data update rate.
    When the sensor rotates, a car traveling at 60 mph travels 8.8 feet in 1/10 second, so the sensor can be said to be incapable of changes that occur within 8.8 feet while the car is passing. Recognizable. More importantly, the coverage of LiDAR (under perfect conditions) is 100-120 meters, which is equivalent to less than 4.5 seconds of driving time for a car traveling at 60 mph.
  4. Cost
    Perhaps for LiDAR, the high cost of the installation is the biggest challenge it needs to overcome. Although the cost of this technology has been greatly reduced since its application, the cost is still an important obstacle.

LiDAR technology applied to the automotive industry

From the vehicle's automatic navigation to LiDAR

The operation method of LiDAR is very straightforward. The principle is the same as that of radar. The difference is that LiDAR uses light waves (infrared), while radar uses electromagnetic waves. Both emit a sequence of pulsed light waves or electromagnetic waves. When the waves travel forward, they will reflect when they encounter objects. When the reflected wave pulse is received and the time of flight is calculated, the distance between each other can be measured. This process is very straightforward mathematical calculations and does not involve algorithms and artificial intelligence. Because the light wave has a short wavelength, it can have accurate resolution and measurement results for the object in front. However, the long wavelength of the radar makes it difficult to distinguish whether the object in front is a pedestrian or a telegraph pole.

LiDAR has been used in other fields before it is applied to automatic navigation. For example, in the field of archaeology, researchers used LiDAR and aerial cameras to discover larger ancient city ruins in Angkor Wat in Cambodia. In addition, LiDAR is also applied to wind turbines to measure the speed and direction of the wind to adjust the best windward angle.

The obstacle to the widespread promotion of LiDAR technology is its high price. LiDAR technology mainly uses a long series of high-power semiconductor lasers and performs a 360-degree rotating scan to obtain a full range of 3D images. Because the optical system requires mechanical rotation, it is expensive. Recently, to popularize and reduce costs, Lidar has gradually abandoned 360 degrees in its design and replaced it with less than 180 degrees and a shorter detection range, so that surface-emitting lasers (VCSEL) and digital light processors (DLP)can be used. The use of diffractive optical surfaces to generate an array of laser light will make the cost structure more competitive.

In the future, when automatic navigation becomes more and more common, if LiDAR’s infrared laser signals are everywhere, it will also cause concerns about health and safety. Therefore, LiDAR sensing needs to reduce the intensity of the laser light. In other words, if it is necessary to reduce the intensity of the laser light, a high-sensitivity photodetector will need to be installed.

The general light sensor operates in the small dark current region of the reverse bias voltage of the element. Once a light signal enters, the current will be enhanced, but any of at least tens of thousands of photons can generate a significant photocurrent. The single-photon light sensor deliberately detects and operates the component in the collapse zone of the reverse bias voltage. If a single photon enters, it will cause a substantial collapse, but it can be restored immediately after the collapse. So, if you count the number of crashes of the component, you know how many photons have been collected, so the sensitivity of detection can be increased by several orders of magnitude.

With the invention of new science and technology, it is often not clear at the beginning what the scenarios will be of its appropriate application. Likewise, a single-photon light sensor may be looked at as a "solution looking for a problem," but as the need for more sensitive detection increases, single-photon light sensors will come forward. In the future, self-driving cars will achieve level 5 fully autonomous driving. Whether it is a stereo camera lens, LiDAR, radar, or ultrasonic, car manufacturers must have the ability to integrate these different detection systems, because no single detection system will have a complete solution. Integrated measurement systems can provide complete data in varying weather, distance, and accuracy conditions.

Published by May 24, 2021 Source :techbang, Source :digitimes

Further reading

You might also be interested in ...

Headline
Knowledge
Environmental Sustainability in EDM: Green Machining Practices
The environmental impact of Electrical Discharge Machining (EDM) is not exempt from the demand for eco-friendly practices and environmental sustainability. The industry is implementing energy-efficient technologies, waste reduction strategies, and the use of eco-friendly dielectric fluids. Recycling and disposal methods for EDM byproducts, along with certifications and standards guiding environmentally friendly practices, are actively shaping the sector.
Headline
Knowledge
EDM Applications in Exotic Alloys and Composites
Electrical Discharge Machining (EDM) has emerged as a versatile and indispensable tool for machining challenging materials, especially exotic alloys and composites. The demand for intricate components made from materials like titanium, nickel-based alloys, and bio-compatible materials in industries such as aerospace and medicine has challenged EDM technology to evolve and adapt. Techniques tailored to meet the demands of these specific industries have enabled EDM to excel in machining such materials.
Headline
Knowledge
Important Features of Bicycle Wheel Design and Construction
Bicycle wheels significantly impact the overall performance, handling, stability, speed, and comfort of the bicycle riding experience. The design, construction, anatomy, and setup are important considerations when choosing the right wheels. Well-designed wheels can enhance efficiency, responsiveness, and enjoyment while riding.
Headline
Knowledge
Smart EDM: The Integration of IoT and Automation
Electrical Discharge Machining (EDM) has long been a cornerstone of precision manufacturing, enabling the creation of intricate and complex parts with unparalleled accuracy. In recent years, the convergence of Internet of Things (IoT) technology and automation has ushered in a new era for EDM, transforming traditional machining processes into smart, connected systems. Automation plays a pivotal role in this transformation, streamlining processes and minimizing human intervention. From enhanced monitoring and diagnostics to improved efficiency, the integration of these technologies is paving the way for more efficient, productive, and predictive manufacturing.
Headline
Knowledge
Micro-EDM Marvels in Precision Engineering
Micro Electrical Discharge Machining (Micro-EDM) has emerged as a transformative precision engineering technology, unlocking new possibilities for manufacturing intricate and miniature components. Micro-EDM offers unique capabilities in advanced applications, including medical device manufacturing, aerospace components, and miniaturized electronics. Several unique solutions have been developed to address exceptional challenges associated with micro-scale machining in the electronics industry, medical implant manufacturing, and aerospace turbine blade production.
Headline
Knowledge
Cutting-Edge Innovations in EDM Technology
Electrical Discharge Machining (EDM) has undergone a remarkable evolution, transforming from a niche technology to a versatile and precise machining method. Key advancements of EDM technology have included the integration of advanced control systems, cutting-edge features, strides in tooling and electrode materials, and the applications and benefits of high-speed EDM.
Headline
Knowledge
Mastering Your Game: The Precision of Gaming Mice
The gaming mouse, once a mere peripheral, has evolved into a vital tool for gamers worldwide, enhancing gameplay through advanced technology and design. In the high-stakes world of competitive gaming, where every millisecond counts, the right equipment can mean the difference between victory and defeat. The gaming mouse is literally at the center of the action and must be designed for precision, speed, and ergonomics. Unlike their standard counterparts, gaming mice are built with advanced features that cater to the nuanced demands of video game enthusiasts. Let's take a look at what makes them unique.
Headline
Knowledge
Understanding the Logistics and Transportation Sector
As the number of e-commerce transactions continues to surge, there is a parallel increase in the demand for logistics services. Amidst the ongoing transformation and upgrade of the industry, the integration of smart technology has emerged as a pivotal factor in driving its development.
Headline
Knowledge
Understanding Mechanism Design and Its Practical Applications
Creating an effective mechanism design entails thoughtful consideration of factors such as materials, specifications, precision, manufacturing processes, and functionality. Moreover, it must be cost-effective to ensure the development of a successful mechanism design.
Headline
Knowledge
Understanding the Granulation Process
Plastic granulation technology plays a pivotal role in the manufacturing of plastic products and the recycling of resources. It is employed to produce a diverse range of plastic products or raw materials, offering both environmental and economic advantages.
Headline
Knowledge
What Constitutes Contemporary Architectural Frameworks for Robotic Computing?
The behavior of robots is frequently modeled as a computational graph, wherein data flows from sensors to computational technology, extending to actuators and then looping back. To enhance performance capabilities, robotic computing platforms need to adeptly map these graph-like structures to CPUs and specialized hardware, such as FPGAs and GPUs.
Headline
Knowledge
How Does the Electroplating Process Work for ABS Plastic?
Over the past few years, plastic electroplating has gained widespread popularity, particularly in the decorative electroplating of plastic components. Among the various types of plastic utilized in electroplating, ABS plastic stands out as the most extensively employed.
Agree