LIDAR technology indispensable for autonomous vehicles
Knowledge

LIDAR technology indispensable for autonomous vehicles

LIDAR (a combination of light and radar) is an indispensable component of many autonomous vehicles. It measures distance through light and becomes the eyes of autonomous vehicles.
Published: May 24, 2021
LIDAR technology indispensable for autonomous vehicles
The working principle of LiDAR

Lidar measures the flight time of light pulses, which can then determine the distance between the sensor and the object. Imagine starting the stopwatch when a light pulse is emitted, and then stopping the timer when the light pulse (reflected from the first object encountered) returns; by measuring the "time of flight" of the laser and knowing the speed of the pulse, you can calculate the distance. Light travels at a speed of 300,000 kilometers per second, so very high-precision devices are required to generate distance information.

Use a laser as a "stick" to measure the distance
To generate a complete point cloud, the sensor must be able to sample the entire environment very quickly. LiDAR uses a very high sampling rate on a single transmitter/receiver, and each transmitter emits tens or hundreds of thousands of laser pulses per second. This means that as many as 100,000 laser pulses complete the round trip from the transmitter on the laser unit to the object to be measured within 1 second, and return to the receiver located near the transmitter on the lidar. Larger systems have up to 64 such transmitters/receivers (it is called a line). Multi-line enables the system to generate more than one million data points per second.
However, 64 fixed lines are not enough to map the entire environment-it just gives a very clear resolution in a very concentrated area. Due to the precision required in optics, it is very expensive to make more wires, so if the number of wires exceeds 64, continuing to increase the number of wires will increase the cost more rapidly. In contrast, many LiDAR systems use rotating components or rotating mirrors to scan the line 360 degrees around the environment.

Common strategies include deflecting individual transmitters and receivers up or down to increase the laser's field of view. For example, Velodyne's 64-lane LiDAR system has a vertical viewing angle of 26.8 degrees (it has a 360-degree horizontal viewing angle through rotation). This LiDAR can see the top of a 12-meter-high object from 50 meters away.

Corresponding to the different lines of LiDAR, there are different sharpness bands, this is because the data facsimile decreases with distance. Although it is not perfect, higher resolutions can be used for closer objects, because as the distance to the sensor increases, the angle between the transmitters (for example, 2 degrees) will cause the spacing between these dot bands to bigger.

The problems LiDAR needs to overcome
  1. The material of the reflective surface
    Since LiDAR is based on the measurement of the time required for the laser pulse to return to the sensor, if the laser hits a highly reflective surface, this will cause problems for the measurement. From a microscopic point of view, most materials have rough surfaces and scatter light in all directions; a small part of this scattered light can always return to the sensor and is sufficient to generate distance data. However, if the surface reflectivity is very high, the light will scatter away from the sensor, then the point cloud in this area cannot be detected, and the data will be incomplete.
  2. The environment in the air
    The environment in the air can also affect the LiDAR readings. Heavy fog and heavy rain will weaken the emitted laser pulse and affect LiDAR. To solve these problems, higher-power lasers have been put into use, but it is not a good solution for smaller, mobile, or power-sensitive application scenarios.
  3. Data update rate during rotation
    Another challenge facing the LiDAR system is the relatively slow update rate when rotating. The update rate of the system is limited by the rotation speed of the complex optics. The fastest rotation rate of the LiDAR system is about 10Hz, which limits the data update rate.
    When the sensor rotates, a car traveling at 60 mph travels 8.8 feet in 1/10 second, so the sensor can be said to be incapable of changes that occur within 8.8 feet while the car is passing. Recognizable. More importantly, the coverage of LiDAR (under perfect conditions) is 100-120 meters, which is equivalent to less than 4.5 seconds of driving time for a car traveling at 60 mph.
  4. Cost
    Perhaps for LiDAR, the high cost of the installation is the biggest challenge it needs to overcome. Although the cost of this technology has been greatly reduced since its application, the cost is still an important obstacle.
From the vehicle's automatic navigation to LiDAR

The operation method of LiDAR is very straightforward. The principle is the same as that of radar. The difference is that LiDAR uses light waves (infrared), while radar uses electromagnetic waves. Both emit a sequence of pulsed light waves or electromagnetic waves. When the waves travel forward, they will reflect when they encounter objects. When the reflected wave pulse is received and the time of flight is calculated, the distance between each other can be measured. This process is very straightforward mathematical calculations and does not involve algorithms and artificial intelligence. Because the light wave has a short wavelength, it can have accurate resolution and measurement results for the object in front. However, the long wavelength of the radar makes it difficult to distinguish whether the object in front is a pedestrian or a telegraph pole.

LiDAR has been used in other fields before it is applied to automatic navigation. For example, in the field of archaeology, researchers used LiDAR and aerial cameras to discover larger ancient city ruins in Angkor Wat in Cambodia. In addition, LiDAR is also applied to wind turbines to measure the speed and direction of the wind to adjust the best windward angle.

The obstacle to the widespread promotion of LiDAR technology is its high price. LiDAR technology mainly uses a long series of high-power semiconductor lasers and performs a 360-degree rotating scan to obtain a full range of 3D images, whether it is an optical system. Or mechanical rotation is expensive. Recently, to popularize and reduce costs, Lidar has gradually abandoned 360 degrees in its design and replaced it with less than 180 degrees and a shorter detection range, so that surface-emitting lasers (VCSEL) and digital light processor(s) can be used. DLP) or the use of diffractive optical surfaces to generate an array of laser light will be competitive in the cost structure.

In the future, when automatic navigation becomes more and more common, if LiDAR’s infrared laser signals are everywhere, it will also cause concerns about health and safety. Therefore, LiDAR sensing needs to reduce the intensity of the laser light, in other words, it is necessary to reduce the intensity of the laser light. A high-sensitivity photodetector is installed on it.

The general light sensor operates in the small dark current region of the reverse bias voltage of the element. Once a light signal enters, the current will be enhanced, but at least tens of thousands of photons can generate a significant photocurrent. The single-photon light sensor deliberately operates the component in the collapse zone of the reverse bias voltage. If a photon enters, it will cause a substantial collapse, and it can be restored immediately after the collapse. So, if you count the number of crashes of the component, you know how many photons have been collected, so the sensitivity is increased by several orders of magnitude at once.

The invention of science and technology is often not clear at the beginning of its appropriate application scenarios. Just like a single-photon light sensor, it will even be commented as a "solution looking for a problem", but once the time comes, it must come forward. In the future, self-driving cars will achieve level 5 fully autonomous driving. Whether it is a stereo camera lens, LiDAR, radar, or ultrasonic, car manufacturers must have the ability to fusion these different detection systems completely, because there is no single detection system. The measurement system can provide complete data in different weather, distance, and accuracy.

Published: May 24, 2021 Source :techbang, Source :digitimes

  • Auto Parts Industry
  • Tech Industry
  • Light Detection and Ranging (LiDAR)
  • Optoelectronic Industry

Further reading

You might also be interested in ...

Headline
Knowledge
What Is an RF Filter?
In microwave communication systems, such as radars, test, and measurement systems, etc., microwave radio frequency filters are the key electronic components. The filter is a passive circuit, and after proper design and setting, it can produce microwave radio frequency filtering.
Headline
Knowledge
What Is A Reducer?
Under modern technology, the power output of equipment such as internal combustion engines and motors is getting stronger and stronger, but without the cooperation of the precision gear of the reducer, the efficiency of the operation will be affected.
Headline
Knowledge
What Is the Cryogenic Treatment Process?
Low-temperature treatment is a sub-zero process, which is carried out immediately after quenching and is carried out by continuous tempering. The ultra-cold treatment has a significant improvement in the wear strength of the workpiece and has a breakthrough benefit for the stability of the mold size.
Headline
Knowledge
Integrated Robotics and Advanced Motion Control
Information is power. Information can not only adjust decision-making but also help discover market opportunities. Use advanced motion control technology to optimize the performance of automated machines.
Headline
Knowledge
What is Motion Control?
Motion control (MC) is a branch of automation. It uses some equipment commonly known as servo mechanisms such as hydraulic pumps, linear actuators, or motors to control the position or speed of the machine.
Headline
Knowledge
What Is the Electroplating Process of Plastic ABS?
In recent years, plastic electroplating has been widely used in decorative electroplating of plastic parts. ABS plastic is the most widely used kind of plastic electroplating.
Headline
Knowledge
RFID Tag Introduction: The Role of RFID In New Retail Supply Chains
There are two kinds of RFID systems that exist- passive and active. If you're new to RFID, you might be wondering what the difference is between these types, and which one is best for your application. Below, we provide a short answer.
Headline
Knowledge
What Is the Basics and Advantage of Between Liquid and Powder Coating?
Metal fabricators looking to take on finishing should know about two of the most common finishing alternatives—liquid and powder coating—and the requirements involved for a company hoping to apply one or both.
Headline
Knowledge
Check The Important Objectives of Tool Designing In The Manufacturing Process
The discipline of tooling design is fundamental to manufacturing. The cost of manufacturing and of the end product depends heavily upon tool design.
Headline
Knowledge
What Is Precision Stamping Technology?
Metal stamping refers to the use of the power of punching machinery and the use of molds as metal plate forming tools to produce punching separation or plastic deformation effects to achieve the production technology of parts in terms of size, shape, and performance requirements.
Headline
Knowledge
Looking Forward to the Global Laser Industry Trend
In response to the development of international industry demand, the laser industry and technology have begun to develop towards 5G semiconductors and smart vehicle process requirements. Taiwan’s laser industry has developed for many years and has a solid foundation, but to continue to keep up with the international pace, the need for independent laser technology step up.
Headline
Knowledge
Which Plastic Machinery Does the Plastics Industry Cover?
Plastic molding processing technology has been widely used in the production of many high-tech products, such as auto parts, 3C electronic products, connectors, displays, mobile phones, plastic optical lenses, biomedical application products, and general daily necessities, etc. With the trend of diversification of product usage and variability in functional requirements, plastic molding processing technology is booming day by day.
Agree