Low-Carbon Production and Global Climate Change
Trend

Low-Carbon Production and Global Climate Change

Countries are actively developing heavy industries, manufacturing, and infrastructure to drive market growth, but they often pay environmental costs accordingly. Approximately 70% of global greenhouse gas emissions come from infrastructure construction and operations, such as power plants, buildings, and transportation. What will be the effect of promoting society's emphasis on low-carbon manufacturing?
Published: Mar 16, 2023
Low-Carbon Production and Global Climate Change

What Is A Low-Carbon Manufacturing Plan?

The Low-Carbon Manufacturing Plan (LCMP) aims to reduce the carbon emissions of plants and assist manufacturers in fulfilling their environmental responsibilities. It provides manufacturers with tools to measure the effectiveness of carbon reduction and a label rating system to enable them to grasp the best measures for managing greenhouse gases.

Low-carbon production development promotion goals:

To fully guide the low-carbon production of the industry, various manufacturing departments in various countries actively promote low-carbon production plans, hoping to improve energy efficiency and use clean energy. In addition to promoting energy efficiency, guiding the process of equipment replacement, and introducing new process technology, low-carbon fuel substitution will lead the industry to lower carbon production. Low volume and low carbon fuels will promote low-carbon industry sustainability and reduce greenhouse gases in the industrial sector.

Advantages of Low-Carbon Production Development

With fossil energy being depleted, and global warming increasing from petroleum use, saving energy in production fields will work to reduce greenhouse gas emissions such as CO2. Low-carbon production is based on advocating low-carbon concepts, pursuing energy efficiency, and clean energy development from the perspective of supply. The following are characteristics of low-carbon production:

  1. Full energy consumption:
    Refers to the sum of energy consumption and indirect energy consumption in production. Energy consumption in production refers to the energy consumption of product production, primary energy consumption such as coal, oil, and natural gas, and secondary energy consumption such as electricity, gas, and steam. It also includes energy consumption for construction.
  2. Low emissions:
    Relatively low carbon emissions and absolute low carbon emissions are two separate considerations. Based on the cost-benefit principle of resources and output, if there are relatively high economic benefits per unit of greenhouse gas emissions, production can be said to have relatively low carbon emissions. However, if there is excessive pursuit of production, the total carbon emissions may still increase significantly. Global warming caused by greenhouse gas emissions such as carbon dioxide is dependent on a series of environmental and ecological factors. Low-carbon emissions are only relatively low-carbon emissions, and the absolute reduction in the total emissions of the entire international community should be a primary goal.
  3. High output:
    Refers to using less material and energy consumption to produce more social wealth. In the discussion about low-carbon production, carbon productivity indicators are introduced to measure low-carbon production. Carbon productivity refers to the gross product value produced per unit of CO2 emissions output value of an industry or region. The higher the product value, the higher the low-carbon production.
  4. Sustainability:
    Low-carbon production sustainability is based on the ideas of "continuous improvement" and "dynamic balance" which emphasize and explore ways to save energy and reduce CO2 emissions throughout the entire industrial chain of product design, production, and consumption.
  5. Industry:
    In different stages of development or in different industries, the intensity of energy consumption and carbon emissions is different. The energy intensity of the heavy chemical industry is much higher than that of the general manufacturing industry. In either industry, the lower the technology, the higher the energy intensity. The industrial structure affects the total energy consumption and the goal is for industry to be less energy intense to save energy, reduce emissions, and promote low-carbon production.
  6. Hierarchy:
    The way low-carbon production should be analyzed at different levels such as micro, middle, or macro.

With the progress of industry and society, to achieve environmental protection and sustainable development, all countries should attach importance to low-carbon manufacturing plans and attempt to strike a balance between social development and environmental protection. As climate anomalies and changes intensify, there is an even more urgent need to actively reduce carbon production.

Published by Mar 16, 2023 Source :wiki

Further reading

You might also be interested in ...

Headline
Trend
Powering the Future: New Energy Vehicles, Sustainable Manufacturing, and Challenges
In the quest for a sustainable and eco-friendly future, the automotive industry is witnessing a profound transformation with the emergence of New Energy Vehicles. New Energy Vehicles, commonly known as NEVs, encompass a wide range of vehicles powered by alternative energy sources or a combination of traditional and renewable energy technologies. The implementation of sustainable manufacturing practices and collaboration among stakeholders presents challenges for NEV development as well as great potential for market growth.
Headline
Trend
Charging Ahead: Recharging Infrastructure in the Electric Vehicle Industry
As the electric vehicle (EV) revolution gains momentum worldwide, one of the critical pillars supporting this transition is the development of a robust recharging infrastructure network. This network plays a pivotal role in the widespread adoption of electric vehicles, ensuring convenience, accessibility, and sustainability for EV owners. Factors contributing to the acceptance of EVs and their associated recharging infrastructure include environmental awareness, advancements in battery technology, vehicle design, the expanding range of available EV models, and the implementation of government incentives to promote these new technologies.
Headline
Trend
Beyond Driving: The Future Landscape of Smart Automobile Technology
As the smart automotive industry embraces the shift toward sustainability, innovation, and connectivity, the manufacturing of Electric Automobiles (EVs) and New Energy Vehicles (NEVs) is shaping the future of transportation. Let’s explore some of the dynamic technology and key factors driving their evolution.
Headline
Trend
Driving Intelligence: The Evolution of Smart Automobile Technology
With the growing acceptance of New Electric Vehicles (NEVs), smart automobile technology has emerged as a fundamental force reshaping the automotive industry. From advanced connectivity and intelligent sensors to artificial intelligence (AI) and Internet of Things (IoT) integration, modern vehicles are evolving into sophisticated, interconnected systems. The manufacturing process of smart electric automobiles and NEVs requires the integration of these various technologies to fully realize benefits such as safety and efficiency, while also addressing evolving regulatory challenges and standards.
Headline
Trend
Riding Strong: Bicycle Frame Materials from Steel to Carbon Fiber
The choice of frame material is a critical decision for cyclists, influencing the performance, comfort, and overall riding experience of a bicycle. From the classic strength of steel to the lightweight versatility of carbon fiber, different materials offer unique properties and characteristics that cater to different riding styles, terrains, and budgets. A good understanding of bicycle frame materials, developing trends and advancements, will help in choosing the right frame material.
Headline
Trend
Electrifying Change: The Impact of E-Bikes on the Bicycle Industry
Electric bicycles, or e-bikes, are reshaping how people commute, exercise, and experience cycling. These innovative vehicles combine the convenience of traditional bicycles with electric propulsion, offering riders enhanced mobility and a more enjoyable riding experience. The impact of e-bikes on the bicycle industry, has brought about new market trends, regulatory challenges, environmental benefits, and future innovations.
Headline
Trend
Virtual Reality Headsets: Applications in the Modern World
In recent years, Virtual Reality (VR) headsets have captured the attention of tech enthusiasts, gamers, and businesses alike, promising immersive experiences that redefine the limits of digital interaction. The demand for VR headsets is expanding across multiple industries, from gaming to healthcare and education, finding many unique applications and benefits. Taiwan, a significant player in electronics manufacturing, has been pivotal in bringing many of these developments to market.
Headline
Trend
USB Flash Drives: Evolution, Trends, and Future Outlook
USB flash drives, commonly known as thumb drives, memory sticks, or USB sticks, are compact, versatile storage devices that have become indispensable tools for data storage, transfer, and backup. Introduced in the early 2000s, USB flash drives offered a groundbreaking solution for portable data storage, replacing older forms like floppy disks and rewritable CDs. Taiwan has played a unique role in the technology development and manufacturing behind these versatile storage devices.
Headline
Trend
Solar Panels with ESS: Sustainable Energy for a Resilient Future
Solar panels combined with Energy Storage Systems (ESS) not only harness the sun’s power but also ensure that energy is stored for future use, making it reliable and consistent. Solar panels with ESS play a critical role in providing energy resilience, reducing emissions, decreasing reliance on fossil fuels, and creating a sustainable future for both residential and commercial energy needs.
Headline
Trend
Vacuum Packaging Machines: Improving Packaging Technology
Vacuum packaging machines have revolutionized the food, pharmaceutical, and industrial packaging industries by providing an efficient means of extending shelf life, maintaining product quality, and improving packaging efficiency. From their early inception to the cutting-edge technologies used today, vacuum packaging machines have seen significant advancements in design and application.
Headline
Trend
Webcam Evolution, Technology, and Trends
Webcams have become an integral part of modern life, serving purposes ranging from casual video calls to professional content creation, security, and even healthcare. Originally designed for basic video communication, webcams have evolved significantly to include HD and even 4K video, specialized microphones, AI-enhanced features, and diverse applications across various industries.
Headline
Trend
Lithium-Ion Batteries: The Power Behind Modern Innovation
Lithium-ion (Li-ion) batteries provide the power for many devices and technologies that define modern life. From smartphones to electric vehicles (EVs), their lightweight and high-energy storage capabilities make them indispensable. Their underlying technology has led to the development of different types, unique applications, and a global manufacturing landscape that has seen a growing role in this dynamic industry.
Agree