What Are the Modern Robotic Computing Architectures?
Knowledge

What Are the Modern Robotic Computing Architectures?

Robotic behavior is often built as a computational graph, with data flowing from sensors to computational technology, all the way to actuators and back. To gain additional performance capabilities, robotic computing platforms must efficiently map these graph-like structures to CPUs, as well as to specialized hardware including FPGAs and GPUs.
Published: Mar 17, 2022
What Are the Modern Robotic Computing Architectures?

Traditional software development for robotic systems has primarily focused on programming the central processing unit (CPU). However, these robotic systems often exhibit processing inefficiencies, high power consumption, and safety issues due to the inherent architectural constraints and limitations of CPUs.

What is a Robot Computing Platform?

Robotic behavior is often built as a computational graph, with data flowing from sensors to computational technology, all the way to actuators and back. To gain additional performance capabilities, robotic computing platforms must efficiently map these graph-like structures to CPUs, as well as to specialized hardware including FPGAs and GPUs.

Robots are complex mechatronic devices, which comprehensively use the latest research results of machinery and precision machinery, microelectronics and computers, automatic control and driving, sensors and information processing, and artificial intelligence.

To integrate these achievements and truly form the ability of cognition, feeling, and action, so that the robot can understand and respond to the real world and accurately complete the operation tasks, the computing platform it carries needs to meet various requirements:

  • Perception ability: The platform has rich I/O interfaces, supports USB3, UART, I2C, and other I/O protocols to receive various sensor data. 360-degree omnidirectional scanning and ranging detection of the surrounding environment, and then obtain the contour map of the surrounding environment.
  • Control ability: It can control various moving parts, such as chassis, arms, fingers, and head, to complete actions in multiple dimensions, and it has real-time and safety guarantees.
  • Computing power: It is necessary to cope with the processing overhead of a large amount of data, as well as meet the huge computing needs of various intelligent algorithms.

Advantages and disadvantages of various computing resources?

Robotics and AI platforms incorporate a variety of computing resources, including CPUs, digital signal processors (DSPs), graphics processing units (GPUs), field-programmable gate arrays (FPGAs), and application-specific integrated circuits (ASICs). They allow roboticists to build flexible computing architectures for robots, requiring the right tools for each task to maximize their performance.

  1. Scalar Processor (CPU):
    Scalar processing elements are very efficient in complex algorithms with multiple decision trees and extensive libraries. But performance scaling is limited. Although CPUs are very flexible, their underlying hardware is fixed. Most CPUs are still based on the Von-Neumann architecture (stored-program computer), where data is brought from memory to the processor, manipulated, and then written back to memory. Each CPU operates sequentially, one instruction at a time, and the architecture is centered around an arithmetic logic unit (ALU), which requires moving data in and out of each operation. In robotics architectures, scalar processors play a central role. Coordinating the flow of information across sensing, actuation, and cognition by using the CPU is fundamental to robotic systems. In addition, Robot Operating System (ROS), a widely adopted software framework for robot application development, is designed in a CPU-centric manner.
  2. Vector processors (DSP, GPU):
    Computational Architecture Vector processing elements (DSP, GPU) are more efficient on a narrower set of parallelizable computing capabilities compared to CPUs. The downside is an inflexible memory hierarchy, which creates latency and loss of efficiency. The GPU performs the same few tasks over and over again, best for professional and functional performance. Vector processors overcome the shortcomings of CPUs in robotics and have the ability to process large amounts of data.
  3. Programmable Logic (FPGA):
    Programmable logic can be precisely tailored to specific computing functions for latency-critical real-time applications. However, these advantages come at the cost of programming complexity. Also, reconfiguration and reprogramming of FPGA’s require longer compile times compared to the programing of scalar and vector processors. Unlike general-purpose memory structures, FPGAs are flexible and adaptable, tailorable to desired tasks,. In robotics architectures, FPGAs enable the creation of run-time reconfigurable robotic hardware via software. Software-defined hardware for robots is good at dataflow computations because statements are executed once all operands are available. This makes FPGAs useful for connecting sensors, actuators, and processing networks. In addition, FPGAs can create custom hardware-accelerated cores with the flexibility to be an alternative to vector processors for data processing tasks.
  4. Application-Specific Integrated Circuits (ASICs):
    The special fixed architecture of the ASIC provides higher performance and power efficiency, as well as the best price for high volume production. But ASICs take many years to develop and no changes are allowed. Therefore, while ASICs will play a role in some future robotic systems, the use of ASICs in robotics architecture is still limited.
  5. Network of Networks:
    Robots are inherently deterministic machines. They are a network of networks where sensors capture data, pass it to computing technology, then to actuators, and back again in a deterministic way. These networks can be understood as the nervous system of the robot. Like the human nervous system, real-time information is passed through all networks to control the coherent behavior of the robot. Von-Neumann-based scalar and vector processor architectures excel at control flow but struggle to guarantee determinism. This is where FPGAs and ASICs come into play as key enabling technologies for robotic systems.
  6. Robot Computing Architecture:
    Consider robotic systems that use robotic operating systems (ROS), which have become common in robotics development. Using ROS, robotic processes are designed as nodes in a computational graph. Robotic computing platforms must be able to efficiently map these graph-like structures onto silicon. The ROS computational graph should seamlessly run across the computational substrate, and data must flow from the programmable logic (FPGA) to the CPU, from the CPU to the vector processor, and all the way back. Robot chips should map not only the ROS computational graph to CPUs, but also FPGAs, GPUs, and other computing technologies for additional performance. 
  7. Best computing resources:
    In contrast to traditional, CPU-centric robotics programming models, the availability of additional computing platforms provides engineers with a high degree of architectural flexibility. Roboticists can take advantage of the properties of various computing platforms: determinism, power consumption, throughput, etc., by selecting, mixing and matching the right computing resources as needed.
Published by Mar 17, 2022 Source :roboticsbusinessreview

Further reading

You might also be interested in ...

Headline
Knowledge
Essential for Precision Machining: A Complete Guide to Tungsten Carbide Center Drills
In modern manufacturing, precision is the core standard by which product quality and performance are measured. From aerospace components to medical devices, even a minor deviation can lead to serious consequences. When it comes to precision drilling, a critical challenge is ensuring that a drill bit can be accurately positioned at the start of a cut while maintaining stability during high-intensity operations. The tungsten carbide center drill is the professional tool engineered specifically to solve this problem.
Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Agree