Smart IoV System with Seamless Experience - Smart Cockpit
Trend

Smart IoV System with Seamless Experience - Smart Cockpit

With the rapid development of the automotive industry in smart driving, safety assistance, automotive electronics, and human-machine interface-related technologies, the integration of virtual and real superimposed displays, driver monitoring systems (DMS), interactive functions, Internet of Things (IoT) of the smart cockpit system have become the current trend.
Published: Jan 16, 2023
Smart IoV System with Seamless Experience - Smart Cockpit

Development of the Smart Car Market:

Smart vehicles have become an important direction for the development of the global automobile industry, and there are also relevant incentive policies and standards. For example, the Road Map 2025 issued by Euro NCAP requires that starting from 2020, vehicles that want to obtain the EU five-star safety certification must with driving monitoring. In addition, since 2023, Euro NCAP will use the function of child detection in the car as one of the scoring criteria, and C-NCAP will follow up in 2025. This will drive market demand, and the warning function of the driving monitoring system will expand to the monitoring system of people in the car, and extend to the detection of children left behind.

Therefore, the monitoring system based on image recognition will use wide-angle cameras as sensors to detect the entire cockpit. However, due to factors such as viewing angle, installation location, and resolution, the accuracy of the legacy detection system in the cabin may be reduced. The image recognition and detection rate of the entire cockpit are developed by the development of deep learning algorithms and millimeter-wave radar-assisted image recognition. Through information conversion and analysis, the movement characteristics of objects in the cabin are extracted as reference information for passenger legacy judgments.

Due to the promotion of Euro NCAP and C-NCAP and market demand, the development of smart cockpit systems will be accelerated. In terms of safety, DMS has expanded from driving status detection to entire cockpit monitoring and has the function of detecting children left behind in the rear seat. To this end, the vehicle center has established image recognition AI algorithm technology and will integrate millimeter-wave radar sensing in the future to improve the accuracy of overall cockpit monitoring and develop line-of-sight detection technology to strengthen the accuracy of driving line-of-sight during Level 3 automatic lane maintenance driving. Need to correctly judge whether the driver can take over, and ensure the safety of himself and other passers-by during automatic driving.

What is a Smart Cockpit?

The smart cockpit is a product with convenient and diversified human-computer interaction/personal interaction, more in-cabin sensors, and an app that is more suitable for automotive application scenarios. At the same time, the smart cockpit is an evolving concept, because the future car cockpit will have more and different application scenarios with the improvement of the degree of automatic driving. For example, long-distance driving and urban commuting will lead to different smart cockpit designs. The smart cockpit covers voice interaction, real-world navigation, and driving status detection. This application highlights the practice of wisdom.

It also includes personalized experience and situational awareness safety is inseparable from the human-computer interaction between the user and the vehicle. The digital cockpit can recognize driving gesture commands, and the digital cockpit supports natural language processing and can realize precise voice control. This makes human-computer interaction more convenient and intuitive, improves efficiency, and can complete various tasks while driving safely.

When comparing smart cockpit concepts to cockpit concepts with rich display environments, one needs to consider how the display environment interacts with the user. He also pointed out that simply having multiple monitors with standard features doesn't make the experience smart. Rather, what is shown on these displays and how they make driving easier is what defines the smart cockpit. Just as more and more artificial intelligence assistants are being used in the cockpit, they configure the user experience by obtaining consumer preferences and behavioral information. They can play their favorite music or plan driving routes autonomously. At the same time, drivers will obtain the latest car services, functional features, and maintenance information through software updates; for car safety upgrades, they will see a new concept that connects drivers and dealers. At the same time, the car can provide payment services, smoothly supporting toll payments or other types of transactions. And the auto insurance industry will also benefit from the use of driving behavior data, which is an important demand for consumers and commercial fleets.

Smart Cockpit Monitoring Technology:

Prepared for a seamless travel experience, the smart cockpit focuses on user needs. Based on the merger of software and hardware, it integrates onboard electronics, dashboards, and smart onboard systems, and connects multiple screens and mobile terminal devices in the cabin. Using the AI intelligence engine and deep learning as a bridge, it actively recommends the services that users need, and at the same time provides the driving behavior monitoring required for safety. Based on professional technical capabilities in various aspects and a variety of third-party software services in series with smart terminals, the user experience is continuously optimized and updated to create an integrated and personalized smart cockpit.

The smart cockpit monitoring technology currently developed by the Vehicle Center (ARTC) mainly installs a wide-angle camera under the interior rearview mirror to capture images of the front seat and some rear seats. And uses the AI image deep learning method to perform face detection and head predict the yaw angle of the face, and then calculate the line-of-sight angle according to the recognized face position. Judging by the position of the cockpit, it recognizes the driver and combines the head tilt angle and line of sight angle to judge whether the driver is distracted, and immediately sends out a warning to remind the driver that there is an abnormal state. In addition to monitoring the driving status while driving, when not driving, the cockpit position is used to determine whether there is a human face in the back seat. To detect whether there are passengers or children left in the cabin, and to provide necessary warnings to avoid and reduce parental abuse or if an adult negligently leaves a child in the car, resulting in injury or death of the child. Or a sleeping passenger is locked in the car, causing an accident.

Characteristics of the Smart Cockpit: Personalization, Digitalization, and Immersive Experience

  • Content digitization, including maps, contacts, media, etc.
  • Personalize the driver and user and migrate the home environment into the vehicle.
  • An immersive cockpit experience, including using applications such as noise reduction to improve the audio and voice experience in the cockpit.

After you enter the driving position, the camera of the driver monitoring system can perform facial recognition to determine who is in control of the vehicle. Elsewhere in the cabin, other separate methods of user identification may be used, such as voice or fingerprint recognition. After recognition, your personalized comfort settings are activated, including seat position and cabin temperature. A vehicle is a connected digital device that seamlessly syncs your content and information.

Gesture-sensing controls allow drivers to more safely interact with the car's audio, ventilation, and other systems. Achieving such an immersive digital experience in the car requires a combination of advanced technologies and knowledge of the car's operating environment, especially in terms of safety, reliability, and efficiency.

ADI has already started collaborating with automakers to help them deploy MEMS microphones with beamforming capabilities for voice control and AI-based software technology for local voice recognition. ADI's advanced noise reduction system can mask road noise to form a personal audio environment while allowing drivers to hear sounds related to driving safety. By deploying microphones, digital audio systems, and advanced DSP, supported by sensors such as accelerometers, the performance of ADI's new noise reduction technology has been greatly improved to provide a quiet cockpit environment and bring a new level of immersive digital experience.

The scope of in-vehicle software control functions continues to expand, leading to a surge in the number of in-vehicle network nodes and the number of signals transmitted over the network. Traditional networking technologies deployed in vehicles require additional cables to cover each additional node and connection. Advanced busbar network technology can shorten the length of cables in the car, help reduce weight, and thus greatly reduce energy consumption. New wireless networks for data or entertainment system components in vehicles can eliminate the weight and cost of cables. ADI's GMSL SerDes technology provides the high bandwidth needed to transport multiple types of data that are increasing in capacity, successfully deploying complex advanced driver assistance systems (ADAS) and infotainment functions in vehicles. Advantages of GMSL include faster aggregation of data, the ability to maintain data integrity for safety applications, and support for systems to display different content on multiple screens in the vehicle.

Uninterrupted high-speed network connectivity is the key to achieving a high degree of digitalization in the car of the future. ADI's new Ethernet-to-the-Edge bus (E2B) uses the new automotive Ethernet 10BASE-T1S technology to support sensors and actuators for Ethernet-to-edge device connectivity. This facilitates the transition to Zonal-based architectures, provides significant savings in cable costs, significantly reduces the number of ECUs, and enables the deployment of new features and enhancements through over-the-air updates. The continued rapid pace of development is helping automakers realize their vision for a new in-cabin experience.

Major Development Trends of the Smart Cockpit:

  1. Panel makers are expected to become Tier1 OEM suppliers
    In terms of smart cockpit hardware, the Micro LED immersive cabin display solution is launched, which can be matched with the cockpit interior panels to display textures in line with the overall style, so that the cockpit design has a consistent aesthetic. At the same time, the high brightness and high contrast of Micro LED Outstanding features, high-penetration textured optical film, etc., meet the various application requirements of smart cockpits.
    Especially in the field of smart cockpits, future automakers are likely to skip Tier 1 and directly purchase software and hardware integration solutions from panel manufacturers. The reason is that when the importance of smart cockpits becomes more and more obvious, automakers will inevitably make differentiated content in terms of user experience. Therefore, customization needs based on car series will also occur frequently. For automakers, if panel makers can meet their needs in a one-stop manner, and will be able to achieve their goals more effectively.
    Technically, it will take some time for panel makers to integrate software, hardware (ECU), and panels, and the testing and running-in with car makers is still going on. But what is certain is that panel factories will play an important role in the field of smart cockpits in the future. It is expected that panels will account for about 50% of the cost of smart cockpits.
  2. Software-defined hardware becomes the key
    In the field of smart cockpits, software-defined hardware will emphasize how to create a better interactive experience. The real smart cockpit interactive experience should be based on the following conditions:
    • Personalization is the most important thing.
    • Humans are visual animals, so how to create an immersive experience is one of the key points.
    • Human-computer interaction will be the ultimate goal of the smart cockpit.
    The so-called smart cockpit must be a cockpit that can learn and grow together with driving. In other words, it is possible to optimize the driving experience through user behavior and preferences; and to achieve this state, it is necessary to rely on self-learning technology. This self-learning technology does not go to the cloud and does not return data, that is to say, we will be able to ensure that these personal data will not be used by third parties (depots). In the past, car manufacturers focused on hardware rather than personalization in the cockpit. To achieve personalization, more attention should be paid to the cockpit software.
  3. The status of edge AI is greatly improved
    The type of traditional cockpit products is relatively simple, mostly dominated by hardware components, controlled by a simple automotive microcontroller (ECU), and the instrument and the vehicle infotainment system (IVI) system are independent and unable to interact with each other. There are fewer internal screens and a single function. In the era of smart cockpits, the screen in the car has become the carrier for displaying services and content, which directly drives the demand for AI and high-performance computing in the cockpit.
    In terms of user experience in the cockpit, in the past, IVI, head-up display, center console, and instrument panel all required individual control by the user, and other common configurations such as seats and rear-view mirrors required manual adjustments. Conversely, the smart cockpit can bring users more immersive experiences through AI and high-performance computing. Such as AI virtual assistance, in-car games, 4K multi-screen display, audio entertainment equipment, multi-screen assistance, and human-machine co-driving wait. This is the main reason why edge computing AI chips have been widely discussed in the automotive market in recent years.
    Why is edge computing so important for vehicles? The car of the future will be composed of many AI sensors. These small heads with AI functions surround the car body and cover different sensing ranges to cope with multiple functions such as self-driving cars and smart cockpits. When the signal paths connecting each sensor to the central processing unit are different and of different lengths, the time of message transmission will also be inconsistent, which may easily cause security concerns. Therefore, for the vehicle, a better architecture would be that the small heads on each edge are connected to the calculation function. And the result signals that have been calculated are transmitted to each other, to reduce the time spent on transmitting images, thereby reducing information transmission time error.
    The advantages of innovations lie in fast and high flexibility, and the AI chip has a Transformer computing model and reconfigurable architecture technology. Under the premise of small size and low energy consumption, the same group of chips can support gesture recognition and face recognition. Expression recognition, voice interaction, driving fatigue detection, and other intelligent functions.

The Smart Car of the Future will Connect Your World:

The smart cockpit is a systematic concept, which can be implemented in a wide variety of forms, and the market penetration rate can vary greatly depending on the definition. Its rapid development covers two points: technology and ecology.

The smart cockpit system integrates driving and the car and controls the driving environment and in-car information through intuitive and visual modes. Driving information is conveyed by vehicle sensors and multimedia channels. While enjoying various entertainments, it can also stay connected at any time to ensure the safety of drivers and passengers.

Published by Jan 16, 2023 Source :edntaiwan, Source :eettaiwan

Further reading

You might also be interested in ...

Headline
Trend
Smart Breathing Masks: From Pandemic Essential to Intelligent Healthcare
The evolution of healthcare is a continuous response to the needs of the times. Breathing masks, a medical consumable we once paid little attention to, are a concrete example of this transformative wave. They are shifting from being a cold, professional tool to a gentle companion infused with intelligence and human-centered care.
Headline
Trend
Addressing Packaging Challenges Across Industries: Key Strategies for Food, Chemical, and Pharmaceutical Sectors
Do different industries face the same challenges? While the products of the food, chemical, and pharmaceutical industries vary greatly, their packaging lines share a common set of core challenges: how to ensure quality and safety while balancing high efficiency and regulatory compliance. As a result, customized packaging solutions have become the mainstream. Packaging machines are no longer single-function devices for "capping and filling" but rather comprehensive systems designed to meet the specific regulations of each industry.
Headline
Trend
Waterless Printing & Smart Tech: The New Eco-Standard for Label Printing
As global expectations for environmental protection rise, both consumers and brands are placing greater emphasis on the environmental impact of a product’s entire lifecycle—from production to recycling. Labels and stickers, as common products in the printing industry, have traditionally relied on large amounts of water, solvents, and energy in their production processes, creating a significant environmental burden. Today, sustainable printing is no longer an optional add-on but a key strategy for building brand trust and enhancing market competitiveness. Brands with clear eco-friendly initiatives are more likely to gain favor from both policymakers and the market, positioning themselves at the forefront of the global sustainability trend.
Headline
Trend
Modern Scaffolding: A Guide to Revolutionizing Construction Safety & Efficiency
From the construction of the ancient pyramids of Egypt to the rise of modern skyscrapers, one crucial temporary structure has always played the role of an unsung hero: scaffolding. This support system not only provides a safe foothold for workers but has also continuously evolved from a simple framework into a highly efficient, precise, and intelligent engineering system.
Headline
Trend
The Connection Between Medical Device Manufacturing and Machine Tools
The medical industry is experiencing rapid growth, driven by an aging population, rising chronic diseases, and technological advancements. The demand for high-precision medical devices is increasing, requiring manufacturing processes that ensure safety, reliability, and performance. Machine tools play a critical role in meeting these stringent requirements, enabling the production of complex medical instruments with exceptional accuracy.
Headline
Trend
Industrial Applications of CNC in the Robotic Arm Industry
CNC technology is an automated system that precisely controls machinery through computer programs, widely applied across various manufacturing sectors. The robotic arm industry encompasses both industrial uses (such as assembly and welding) and service applications (such as latte art or maintenance). In Japan, for instance, people with disabilities can remotely operate robots from home for work. This industry is visibly experiencing rapid growth. According to 2025 market data, the global robotics market is expected to reach USD 50.8 billion, with service robots accounting for USD 40.58 billion, demonstrating strong growth potential. The application of CNC in the robotic arm industry extends beyond component manufacturing to control systems and versatile task execution.
Headline
Trend
From Solar to Wind: The Heart of Green Energy
When discussing the energy transition, attention often falls on the surface area of solar panels, the blades of wind turbines, or the massive structures of nuclear power plants. Yet behind these world-changing energy systems, the critical components that drive solar, wind, and nuclear operations rely heavily on precision-manufactured CNC machines. Often hailed as the “brains of manufacturing,” these machines, with micron-level precision and highly automated capabilities, serve as the invisible engine powering technological breakthroughs and future innovations in the energy sector.
Headline
Trend
Seeing the Future in Wood: How CNC Technology is Transforming the Woodworking Industry
Traditional woodworking has long been synonymous with craftsmanship. In the past, the meticulous shaping of wood required artisans wielding hand planes, relying on time and experience to perfect every piece. Today, however, we live in an era of automation, and CNC (Computer Numerical Control) machinery has become the backbone of modern woodworking. Through precise computer control and high-speed processing, CNC enables wood cutting, carving, and complex shaping with exceptional accuracy and consistency. The woodworking industry is entering a new phase centered around digital control, ushering in higher quality and greater value-added production.
Headline
Trend
The “Comeback” of Print: Rediscovering Vitality in the Age of Scattered Attention
Driven by the wave of digitalization, we have long grown accustomed to a daily life where information constantly “scrolls” into our view. E-books, online news platforms, and short videos occupy our fragmented time, while print publications were once seen as relics destined to fade away. Yet history is often full of reversals—just as digital media reached its peak in speed and density, print quietly returned to the stage, even becoming an “irreplaceable choice” for certain audiences. This phenomenon not only challenges our linear imagination of media evolution but also reveals deeper psychological needs behind human reading behaviors.
Headline
Trend
Next-Gen Aviation: How Advanced Materials Are Revolutionizing Aircraft
As technology advances, the design philosophy behind modern passenger aircraft is undergoing a profound transformation. The evolution of aircraft materials is no longer just about reducing weight; it's a comprehensive revolution encompassing intelligence, safety, and sustainability. From groundbreaking composites to self-diagnosing smart sensors and manufacturing techniques built on a circular economy, future aircraft won't just be cold machines. They’ll be intelligent, self-aware, safer, and more eco-friendly flying bodies.
Headline
Trend
Overview of the Aerospace Industry Chain
The aerospace industry, as a cornerstone of modern high-tech manufacturing, encompasses civil aviation, defense, and space exploration, while representing a high degree of integration in materials science, precision machining, and intelligent manufacturing. The entire industry chain spans from upstream development and supply of high-performance materials, through midstream precision component manufacturing and modular assembly, to downstream final assembly, flight operations, and maintenance. Each segment imposes stringent requirements on safety, reliability, and performance. With the continuous expansion of the global aviation market and the rapid development of carbon-neutral initiatives, smart manufacturing, and digital technologies, the aerospace industry chain has become highly complex and interdependent.
Headline
Trend
Global Energy Industry Chain Structure and Development Trends
The energy industry serves as the core driving force of the global economy, with a vast and complex industrial chain that encompasses the entire process from resource development and energy conversion to end-use applications. Driven by climate change, energy security, and technological innovation, traditional fossil fuels and emerging renewable energy sources are increasingly intertwined, gradually reshaping the global energy landscape. In this context, the energy industry chain is not merely an extension of supply chain management but also a critical nexus connecting policy, finance, technology, and markets. A comprehensive understanding of its upstream and downstream structure, as well as its development trends, has become essential for evaluating energy transition and industrial competitiveness.
Agree