Challenges of Taiwan's Manufacturing Transformation to Smart Manufacturing
Trend

Challenges of Taiwan's Manufacturing Transformation to Smart Manufacturing

The advent of the Industry 4.0 era, coupled with the continued fever of the China-US trade war, has driven Taiwan's manufacturing industry to transform its digital manufacturing into smart manufacturing through digitalization and intelligentization. However, there are four major challenges encountered during the transformation process, and finding a solution to the practice will be the key to the company's victory.
Published: Jun 01, 2020
Challenges of Taiwan's Manufacturing Transformation to Smart Manufacturing

In the face of rapid and iterative new technologies, how can an enterprise stand firm in the market without being eliminated, invest, and consolidate its wisdom to create a new future? Taiwan ’s general manager of IBM said that a few months ago IBM invited the CEOs of 100 leading companies worldwide to discuss the future development of the betting focus. She suggested that companies should not blindly follow new technologies, re-examine their core competitiveness, and then decide which technologies to use for development Smart manufacturing. Two years ago, the company introduced Industry 4.0, started smart manufacturing, and started to make results from a single application on the production line, such as robotic arms or computer vision inspection. However, it was found difficult to copy to other production lines and scenes.

Four Challenges for Taiwanese Enterprises to Develop Smart Manufacturing

A partner of the IBM Global Enterprise Consulting Service Group in Taiwan said: "The dilemma of global smart manufacturing is that nearly 70% of them are difficult to promote and scale quickly." The lack of vertical integration and horizontal expansion makes it difficult to produce specific economic benefits, making Smart manufacturing has encountered a bottleneck, and further pointed out that in the process of developing smart manufacturing in Taiwan, the manufacturing industry generally faces the following four major challenges:

  • Challenge 1: Automation should not be the only positive solution to the old factory system.
    The manufacturing industry has a lot of layout automation, hoping to replace manpower, increase the yield of products, and set off a wave of unmanned factories and light-off factories. "Smart manufacturing requires a complete vertical field to produce a certain economic scale and vertical efficiency, which will be the key to successful transformation!" If only automation is developed, it is not structured and scenarios with the supply chain, production planning, material planning, and other processes Integration, such as equipment upgrades, creating data interfaces, etc., will face the issue of whether automated capital expenditures meet the return on investment. Li Liren suggested that, in response to the current status of the enterprise and the market to be developed, the future overall structure and the integration of new technology should be drawn.
  • Challenge 2: The economic scale and benefits of AI
    Smart manufacturing have developed a mature single scene, such as machine vision used in yield improvement, defect detection, predictive maintenance, etc., but why can't it still improve the company's yield and save manpower? It is because the single-point results have not formed an economic scale and can be copied to other production lines, or lack of high economic efficiency applications and combinations. Li Liren suggested that enterprises use investment return rates and enterprise KPI to guide value verification and structural integration to accelerate the implementation.
  • Challenge 3: The burden of talents and huge old systems.
    For smart manufacturing to develop vertical integration, it will face IT architecture and more than 80% of application systems are issues of old systems. Except that IT budgets are placed on maintaining machine systems, even internal talent Skills also focus on the old system. It is necessary to make good use of ecosystem partners, execute quickly, and expand rapidly. Once it is time to move on to the development of digital transformation and smart manufacturing, it is necessary to train new skills for internal talents. If the economic scale of the group is large enough, you can invest in a new project team with a clear role of integrator, and use newly hired talents for rapid verification, deployment, and promotion, so that the scene application can be quickly achieved. If Dong always manages to take the initiative, he can accelerate the benefits.
  • Challenge 4: Vertical integration and horizontal diffusion.
    When companies develop smart manufacturing, they often start with project trials and cut application scenarios very fragmented, while the initial investment and results have become burdens for subsequent development. Besides, without the future integration structure, it is difficult to quickly spread to different production lines or group departments. The enterprise should establish a clear and complete execution blueprint and timetable, and the execution plan should take three years to plan the execution budget every year.
From the experience of Japanese industrial robot manufacturers and China Heavy Machinery Group, a glimpse of the key to smart manufacturing success.

A Japanese industrial robot manufacturer wanted to develop a new business model and decided to invest in smart manufacturing, build smart factories and robot automation, and quickly expand to the market. This Japanese industrial robot manufacturer will integrate strong OT (Operational Technology) into IT to make a complete vertical integration structure, quickly step out of a single factory, and expand rapidly. To develop a digital factory, China National Heavy Machinery Group plans a four-step overall blueprint.

  • The first step is to do a status quo assessment, complete inventory of existing enterprise resources, and analyze the structure of the digital factory.
  • The second step is a business improvement and demand analysis, put forward management improvement suggestions and objectives, identify the key system support points and needs of the digital factory, and determine the enterprise's digital factory business model.
  • The third step is the overall digital factory planning architecture, including a complete digital factory planning blueprint, strategic goals, and establishing a digital factory application architecture that matches the business, as well as related basic technologies and systems.
  • The fourth step is the digital factory, determine the project to be achieved, and list the detailed implementation plan, focus on the goals in a three-year rolling and one-year adjustment, and establish a perfect digital factory management system to create a system supervision system to the system guarantees success.

5C maturity model: Review the process of enterprise smart manufacturing

How does the manufacturing industry examine the depth and breadth of the company's smart manufacturing process? IBM launched the "5C maturity model" for smart manufacturing, which is divided into five stages by maturity:

Step 1: Device connection (Connect): use the Internet of Things and machine networking to achieve device-to-device connection and collaboration. It is difficult to develop AI and application scenarios if the old equipment is not smart enough to collect data.

Step 2: Data conversion (Convert): combining AI big data platform and edge computing, to develop intelligent AI application scenarios on the device side. For example, AI visual inspection, AI predictive maintenance.

Step 3: Predictive simulation (Cyber): Introducing digital twins (Digital Twin) to the digital factory. Visualize the production site, and dynamically simulate to scheduling, and even achieve dynamic scheduling of learning engine orders and production lines.

Step 4: Smart Factory (Cognitive): To build an artificial intelligence learning platform, so that the factory can self-diagnose, self-repair, automatic scheduling, and accelerate model verification and deployment.

Step 5: Dynamic customization (Configure): through B2B hybrid cloud platform, blockchain, dynamic customization, to achieve a small variety of short delivery time, to achieve a software-defined value chain platform.

As the scenario application becomes more mature, enterprises face four major challenges when investing in smart manufacturing. The biggest bottleneck is a vertical and cross-product line, cross-sector integration. IBM recommends that enterprises plan the overall blueprint and match with suitable partners at each stage Accelerate the implementation of smart manufacturing.

Published by Jun 01, 2020 Source :cw

Further reading

You might also be interested in ...

Headline
Trend
The Application of Materials Science in Medical Device Manufacturing
In the field of medical device manufacturing, materials science plays a central role, directly impacting the safety, durability, and clinical performance of equipment. With the rapid development of smart healthcare and precision medicine, the demands for material performance have become increasingly stringent, particularly in the areas of biocompatibility, antimicrobial properties, and lightweight design.
Headline
Trend
Globalization and Steel-and-Glass Structures: Has the Architectural Divide Between East and West Disappeared?
In the West, concrete is a symbol of strength and efficiency, yet in the hands of a Japanese master, it can become a vehicle for Zen philosophy. In Asia, bamboo is revered as a sustainable material, but in the West, it is being redeveloped into a high-tech, eco-friendly solution. This article will delve into why architects from the East and West, even when faced with the same materials, can create two completely different architectural identities. The root of this lies in a fundamental difference in philosophy: the Eastern focus on living in harmony with nature and the Western drive to challenge physical limits.
Headline
Trend
Sewing Challenges in the Era of Sustainability: Balancing Durability and Eco-Friendliness
In discussions on sustainable textiles, sewing threads may seem insignificant, yet they play a crucial role. The material and production process of threads not only affect the durability of garments but also have long-term environmental impacts. In particular, under the influence of “fast fashion,” low-quality threads often break or fade easily, leading to garments being quickly discarded. In contrast, durable threads made from sustainable sources help extend the life cycle of clothing, reduce waste, and embody the concept of “slow fashion.”
Headline
Trend
Smart Breathing Masks: From Pandemic Essential to Intelligent Healthcare
The evolution of healthcare is a continuous response to the needs of the times. Breathing masks, a medical consumable we once paid little attention to, are a concrete example of this transformative wave. They are shifting from being a cold, professional tool to a gentle companion infused with intelligence and human-centered care.
Headline
Trend
Addressing Packaging Challenges Across Industries: Key Strategies for Food, Chemical, and Pharmaceutical Sectors
Do different industries face the same challenges? While the products of the food, chemical, and pharmaceutical industries vary greatly, their packaging lines share a common set of core challenges: how to ensure quality and safety while balancing high efficiency and regulatory compliance. As a result, customized packaging solutions have become the mainstream. Packaging machines are no longer single-function devices for "capping and filling" but rather comprehensive systems designed to meet the specific regulations of each industry.
Headline
Trend
Waterless Printing & Smart Tech: The New Eco-Standard for Label Printing
As global expectations for environmental protection rise, both consumers and brands are placing greater emphasis on the environmental impact of a product’s entire lifecycle—from production to recycling. Labels and stickers, as common products in the printing industry, have traditionally relied on large amounts of water, solvents, and energy in their production processes, creating a significant environmental burden. Today, sustainable printing is no longer an optional add-on but a key strategy for building brand trust and enhancing market competitiveness. Brands with clear eco-friendly initiatives are more likely to gain favor from both policymakers and the market, positioning themselves at the forefront of the global sustainability trend.
Headline
Trend
Modern Scaffolding: A Guide to Revolutionizing Construction Safety & Efficiency
From the construction of the ancient pyramids of Egypt to the rise of modern skyscrapers, one crucial temporary structure has always played the role of an unsung hero: scaffolding. This support system not only provides a safe foothold for workers but has also continuously evolved from a simple framework into a highly efficient, precise, and intelligent engineering system.
Headline
Trend
The Connection Between Medical Device Manufacturing and Machine Tools
The medical industry is experiencing rapid growth, driven by an aging population, rising chronic diseases, and technological advancements. The demand for high-precision medical devices is increasing, requiring manufacturing processes that ensure safety, reliability, and performance. Machine tools play a critical role in meeting these stringent requirements, enabling the production of complex medical instruments with exceptional accuracy.
Headline
Trend
Industrial Applications of CNC in the Robotic Arm Industry
CNC technology is an automated system that precisely controls machinery through computer programs, widely applied across various manufacturing sectors. The robotic arm industry encompasses both industrial uses (such as assembly and welding) and service applications (such as latte art or maintenance). In Japan, for instance, people with disabilities can remotely operate robots from home for work. This industry is visibly experiencing rapid growth. According to 2025 market data, the global robotics market is expected to reach USD 50.8 billion, with service robots accounting for USD 40.58 billion, demonstrating strong growth potential. The application of CNC in the robotic arm industry extends beyond component manufacturing to control systems and versatile task execution.
Headline
Trend
From Solar to Wind: The Heart of Green Energy
When discussing the energy transition, attention often falls on the surface area of solar panels, the blades of wind turbines, or the massive structures of nuclear power plants. Yet behind these world-changing energy systems, the critical components that drive solar, wind, and nuclear operations rely heavily on precision-manufactured CNC machines. Often hailed as the “brains of manufacturing,” these machines, with micron-level precision and highly automated capabilities, serve as the invisible engine powering technological breakthroughs and future innovations in the energy sector.
Headline
Trend
Seeing the Future in Wood: How CNC Technology is Transforming the Woodworking Industry
Traditional woodworking has long been synonymous with craftsmanship. In the past, the meticulous shaping of wood required artisans wielding hand planes, relying on time and experience to perfect every piece. Today, however, we live in an era of automation, and CNC (Computer Numerical Control) machinery has become the backbone of modern woodworking. Through precise computer control and high-speed processing, CNC enables wood cutting, carving, and complex shaping with exceptional accuracy and consistency. The woodworking industry is entering a new phase centered around digital control, ushering in higher quality and greater value-added production.
Headline
Trend
The “Comeback” of Print: Rediscovering Vitality in the Age of Scattered Attention
Driven by the wave of digitalization, we have long grown accustomed to a daily life where information constantly “scrolls” into our view. E-books, online news platforms, and short videos occupy our fragmented time, while print publications were once seen as relics destined to fade away. Yet history is often full of reversals—just as digital media reached its peak in speed and density, print quietly returned to the stage, even becoming an “irreplaceable choice” for certain audiences. This phenomenon not only challenges our linear imagination of media evolution but also reveals deeper psychological needs behind human reading behaviors.
Agree