The Automatic Detection Method of Total Hydrocarbons in Air

The Automatic Detection Method of Total Hydrocarbons in Air

Total petroleum hydrocarbons are a mixture of many different compounds. People can be exposed to total petroleum hydrocarbons in several ways, including fuel pumps, oil spilled on the road, and chemical use at work or home. Certain total petroleum hydrocarbons can affect the nervous system, causing headaches and dizziness.
Published: Nov 11, 2022
The Automatic Detection Method of Total Hydrocarbons in Air

What are Total Petroleum Hydrocarbons?

Total petroleum hydrocarbons are a chemical mixture, all constituent chemicals are mainly composed of carbon and hydrogen. Scientists classify the total petroleum hydrocarbons according to their reaction in soil or water, which can be divided into many petroleum hydrocarbons groups. Each group is made up of many individual chemicals.

How Does the Entry of Total Petroleum Hydrocarbons into the Environment Change?
  • Total petroleum hydrocarbons may enter the environment unintentionally through industrial emissions, or by-products from commercial or personal use.
  • Total petroleum hydrocarbons may enter the water directly through spills or leaks.
  • Some total petroleum hydrocarbons float in water and form a surface film.
  • Other total petroleum hydrocarbons sink into the sediment.
  • Bacteria and microorganisms in water may decompose some of the total petroleum hydrocarbons.
  • Some total petroleum hydrocarbons may migrate to the soil and remain there for an extended time.

The Automatic Detection Method of Total Hydrocarbons:

This detection method is an online flame ionization detection method. The sample directly enters the flame ionization detector (FID) through the system flow path to measure the content of Total hydrocarbon (THC) in the air. In addition, the sample is introduced into a selective combustion system (such as a catalytic converter) that decomposes non-methane total hydrocarbons and enters the FID detector to measure the content of Methane in the air. After deducting methane from THC, Total nonmethane hydrocarbon (TNMHC) content, the measured concentrations are expressed relative to methane.

  • Scope of application: It is suitable for the detection of methane, total hydrocarbons, and non-methane total hydrocarbons in the air. The measurement range depends on the design of the instrument. Generally, it is recommended to select an instrument with a measurement range of not more than 100 ppm of total hydrocarbons in the air.
  • Interference: High moisture content can affect sample concentration measurements.
  • Sampling and saving: Unless otherwise stipulated by other environmental protection laws and regulations, the location of the sampling port is generally within the height range of 3 to 15 meters above the ground, and the placement position of other air sampling ports is in principle far away from the ground. Within the height range of 1.2 to 1.5 meters above the ground.

What Related Equipment and Materials are Required?

  1. Automatic analyzer for methane, total hydrocarbons, and non-methane total hydrocarbons: The air sample is directly introduced into the FID detector, and the measured result is the concentration of total hydrocarbons. In addition, the sample is introduced into a selective combustion system, which is used to burn the non-methane hydrocarbons in the sample to remove the methane concentration after introduction into the FID detector. The non-methane hydrocarbon concentration is obtained by subtracting the methane concentration from the total hydrocarbon concentration.
  2. Filter: Filter particulate pollutants in the air, such as Teflon and other materials that are not easy to absorb total hydrocarbons.
  3. Recorder: A recorder or data logging system compatible with the analyzer must be able to display and record the concentration of each measurement in an appropriate range.
  4. Sampling equipment:
    • Sampling port: The shape of the sampling port should avoid turbulent flow, such as using a geometrically symmetrical circular opening.
    • Air extraction motor: The air extraction volume must meet the total flow required by the instrument.
    • Gas delivery pipeline: The material of the pipeline in contact with the sampling gas must not adsorb hydrocarbons, and will not release substances that affect the hydrocarbon analysis of the detector, generally Teflon or other inert substances. The other pipelines used for fuel gas and standard gas can be made of Teflon or metal.
  5. Calibration equipment:
    • Flow control valve: It can adjust and control the flow. If it is used for dilution (such as the mass flow controller used in the dynamic dilution system), the accuracy must reach ±2% within the range of the flow.
    • Flowmeter: calibrated flowmeter with an accuracy of ±2%.
    • Cylinder pressure control valve: pressure controller with inert material inner membrane and inner components.
    • Mixing tank: a container for fully mixing A, propane standard gas, and zero-point standard gas.
    • Output manifold: an air distribution pipe made of Teflon or other inert materials, connected to the analyzer with a pressure-resistant pipeline of appropriate diameter, and equipped with a valve to prevent the entry of the atmosphere.

What Related Detection Reagents are There?

  • Methane (CH4) standard gas: methane standard gas containing the concentration required for calibration or high-concentration methane standard gas for dilution.
  • Propane (C3H8) standard gas: the standard gas of propane containing the concentration required for calibration or the standard gas of high concentration for dilution.
  • Zero-point standard gas: high-purity air with a total hydrocarbon concentration of less than 0.1 ppm (calculated as methane concentration).
  • Hydrogen: fuel gas, used for FID analysis, and its total hydrocarbon concentration should be less than 0.1 ppm (calculated as methane concentration).
  • Combustion-supporting gas: air or other suitable gas used for FID analysis, and its total hydrocarbon concentration should be less than 0.1 ppm (calculated as methane concentration).

What are the Steps?

  1. General operation steps: After the sampling equipment, methane, total hydrocarbons, and non-methane total hydrocarbons automatic analyzers and recorders are properly installed, first check the piping system and other equipment, and then carry out the inspection work after confirmation.
    • Set the operating conditions.
    • Zero point/full-scale inspection, if the zero offset or full-scale offset of the respective measurement systems for methane, total hydrocarbons, and non-methane total hydrocarbons does not meet the specifications, perform multi-point calibration again.
    • Perform a sample gas sampling analysis.
  2. Calibration steps:
    • Dynamic dilution method—Use high-concentration methane or propane standard gas to dilute to various desired concentrations by dynamic dilution.
      • Combined calibration system.
      • All flow meters used should be calibrated, and the volume has been converted to the conditions of 25 ℃, 760 mmHg.
      • Set the calibration range of the methane, total hydrocarbons, or non-methane total hydrocarbons analyzer to be the same as the general operating range.
      • Connect the analyzer and recorder.
      • Adjust the zero-point standard gas flow control valve to set the total gas flow so that enough flow can be input into the analyzer. Pass the gas until the analyzer shows a stable value, then adjust the zero-control knob of the analyzer to obtain a signal of 5% compensation of the recorder, and record the reading as the zero-point background value.
      • Adjust the flow rate of zero-point standard gas and standard gas from methane or propane to generate standard gas with full-scale concentration.
    • Multiple cylinder method - use methane or propane standard gases with confirmed concentrations for calibration.
      • Multi-cylinder calibration system device.
      • Input the zero-point standard gas and the standard gas of full-scale concentration respectively. After adjusting the zero-point and full-scale of the analyzer, input each standard concentration gas. Draw a calibration curve according to the input standard concentration of methane or propane and the response of the analyzer.

How to Carry Out Quality Control?

  1. Correction frequency:
    • Newly installed or relocated instruments.
    • After the main equipment of the instrument has been maintained.
    • The routine zero-point offset or full-scale offset every working day does not meet the specifications.
    • Periodic calibration every 6 months.
  2. Multi-point calibration: When performing multi-point calibration with five different concentrations of methane or propane standard gas such as 0%, 20%, 40%, 60%, and 80% of the measurement range, the linear correlation coefficient must be greater than 0.995.
  3. Medium concentration inspection: After the system has been calibrated at zero point and full scale. The second source methane or propane standard gas with a concentration of about 50% full scale must be imported every working day. It should be less than ±2% of the full scale. If the system displays non-methane total hydrocarbons, the value error of the measurement system should be less than ±4% of the full scale.
  4. The flow control valve shall be calibrated every 6 months.
Published by Nov 11, 2022 Source :epa

Further reading

You might also be interested in ...

What Exactly is a Planning Machine?
In recent years, various industrially advanced countries have used machines to replace manpower for bench work, making the application of machine tools more extensive and important. Although the processing precision of milling machines and grinding machines is superior to that of planers, the price is more expensive than planers. Generally, small and medium-sized factories still use planers for many initial processing tasks in order to take into account equipment investment costs. So what exactly is a planer? Let's take a look together.
Simultaneous Tapping Control Structure and Adjustment Technology
With the rapid development of 3C products and the aerospace components industry, the technology of CNC machine tool rigid tapping is more widely used.
What is a Turbocharger?
Turbochargers are often used to increase the intake air volume of an internal combustion engine, thereby increasing horsepower output.
What are Turbine Blades?
Turbine blades are an important component of the turbine section in a gas turbine engine. The high-speed rotating blades are responsible for drawing high-temperature and high-pressure air into the burner to maintain the engine's work.
What are EMRs and EHRs? Indispensable Medical and Health Data Systems in Smart Healthcare
EMR (Electronic medical record) is focused medical data, mainly used by clinicians for diagnosis and treatment. EHR (Electronic health record) focuses on personal health data, which includes the state of physical, mental, or mental health. EHR has a wider range than EMR.
High-Speed Transmission Technology - Universal Serial Bus 4
The demand for high-speed transmission is increasing day by day, which has promoted the rapid development of USB (Universal Serial Bus) technology in recent years. The introduction of a central processing unit (CPU) that supports USB4 symbolizes that USB technology has entered a new era.
What are the Classifications of Abrasives?
Abrasives are a general term for abrasives and abrasive tools, including abrasive products and abrasive products.
What is Power Machinery?
The manufacture, operation, and maintenance of land, sea, and air vehicles are all covered in the power machinery industry.
Tech to Wear: Technical Textiles
One of the simplest ways of classification is to classify textiles other than general clothing and home decoration textiles as technical textiles. Let’s see what are so called Technical Textiles.
What is the Textile Industry?
The upstream of the textile industry chain is the petrochemical raw material. After being manufactured into nylon fiber, polyester fiber, rayon fiber, carbon fiber and other human fiber products, it is spun into yarn, then woven into cloth, and then bleached, dyed, printed, Dyeing and finishing procedures such as coating, finishing, tailoring and sewing into garment products or other related textile products. The textile manufacturing process can be divided into four stages: fiber, textile, dyeing and finishing, ready-to-wear/home textiles, among which textiles can be further divided into two steps: spinning and weaving: spinning is the transformation of roving into spun yarn. After being sent to the factory, the yarn is inserted into the operation axis of the textile machine table, and the textile machine table pulls the yarn upward and sends it to the textile machine; the next step is the weaving step, at this stage, the shuttle is used in the textile machine. It shuttles back and forth continuously, and finally weaves it into a piece of cloth. After finishing the cloth fabric (including cotton, wool, synthetic fiber, etc.) into a box, it can be sent to downstream manufacturers for post-processing to form a textile industry chain.
Underwater Robotics - Science and Technology for Subsea Exploration
Underwater robotics is not only used in rescue and search, it has already been used in marine resource exploration, seabed topographic mapping, and the construction and maintenance of marine engineering structures.
What is Carbon Fiber Molding Process?
Carbon fiber composite materials need to be processed using a molding process from prepreg to the final part. With the development of carbon fiber technology, the molding process of carbon fiber composite materials is also constantly improving. However, various molding processes of carbon fiber composite materials do not exist in the way of updating and eliminating, and often a variety of processes coexist to achieve the best effect under different conditions and different situations.