Underwater Robotics - Science and Technology for Subsea Exploration
Knowledge

Underwater Robotics - Science and Technology for Subsea Exploration

Underwater robotics is not only used in rescue and search, it has already been used in marine resource exploration, seabed topographic mapping, and the construction and maintenance of marine engineering structures.
Published: Nov 11, 2022
Underwater Robotics - Science and Technology for Subsea Exploration

Why do You Need Underwater Robotics?

Before the development of robots to explore the ocean, submarine pipelines and cables must be repaired when they are damaged or broken, or when the infrastructure of oil rigs and harbor terminals under the sea is checked for safety and stability, divers were relied on. These divers must risk dangerous dives into the deep sea to perform repairs, inspections, and even salvage tasks.

With the advancement of technology, these dangerous tasks have gradually been transferred to underwater robots, including oil extraction, submarine mineral exploration, underwater search, and salvage operations. Or inspection of submarine pipelines, underwater structures, submarine cables, oil drilling Underwater facilities such as platforms and harbors, and military operations have greatly reduced the risks faced by personnel when performing these tasks.

Exploring the deep sea can help humans analyze the evolution process of the earth and life, discover new biological species, and understand how biological groups survive in extremely dangerous environments. Even today, in the face of energy catastrophe, the detection and exploitation of new energy also need to rely on Sufficient deep-sea exploration capability. To meet the needs of developing oceans and sustainable oceans, underwater robots have become an important tool for exploring the unknown deep sea, and it is also the goal of competition and research and development among advanced countries in the world.

Uncharted Ocean Territories:

Due to the limitations of darkness, cold and high pressure, most of the deep-sea areas are unexplored by humans. Because seawater absorbs and scatters light, particles suspended in seawater also scatter light, making the deep ocean dark. The ocean also engulfs other types of electromagnetic radiation besides light, including radio signals. In addition, the deep sea is extremely cold, and the temperature in the water at a depth of 500 meters is usually only 4 to 6 degrees Celsius. In the deep ocean, devastating pressure restricts everything that enters it. This force is similar to atmospheric pressure on the ground, but because water is much denser than air, it increases by about 1 atmosphere for every 10-meter increase in water depth in seawater.

With the assistance of high technology, scientists have designed underwater robots that can overcome the high pressure and dark environment, and help humans to complete tasks in and out of the deep sea. Or stay in specific areas of the deep sea such as ridges and trenches for a long time to collect and detect data. Working at these deep-sea levels, combined with the high risks of using oil and gas, means many tasks are done autonomously, with ROVs, autonomous underwater vehicles (AUVs), and robotics leading the way.

What is Underwater Robotics?

  • Underwater robots can be divided into two types: remote-controlled underwater robots and autonomous underwater robots. Autonomous underwater gliders are the deformation of autonomous underwater robots.
  • Remotely controlled underwater vehicles: Also known as ROVs (remotely operated vehicles), they rely on a tether with copper wires or fiber optic bundles inside to connect to working research vessels on the sea to provide underwater robot motion required power, transmit control commands, and send back information gathered under the sea. ROVs have gradually replaced divers and become the mainstream of underwater operations. Because they can be equipped with robotic arms for exploration purposes, they are used for sample collection, seabed salvage, and my sweeping.
  • Autonomous underwater vehicles: Also known as autonomous underwater vehicles (AUVs), they communicate freely in seawater through their batteries and autonomous navigation programs through sound wave communication. AUVs are often used in surveys and mapping operations under ice, military science applications, sonar deployment and safety monitoring posts, surveys of hazardous waste sites, geological vibration surveys and recordings of volcanic earthquakes, submarine shipwreck detection, port surveillance, environmental monitoring, submarine cable detection, etc. ROV is an underwater robot that can be remotely controlled. Generally, large ROVs have basic equipment such as the main computer, propellers, cameras, lights, and robotic arms. After transmitting power and signals through communication cables, the ROV pilot can be on board. For remote operation, and because the power is provided by the ship, the ROV has no working time limit in the water. ROV can be divided into 5 levels according to size and function, namely the first-level observation type, the second-level loadable observation type, the third-level working type, the fourth-level towed type, and the fifth-level prototype.
  • Subsea seismograph: A subsea seismograph is a seismic observation system that places seismic sensors on the seabed. It can monitor and record seismic data, improve the location accuracy of earthquake hypocenters, and understand the structure of seabed stratigraphic profiles.

Features of the Underwater Robotics:

  • Structure: To operate in the deep sea, the underwater robot must have a good structural design to withstand the increased seawater pressure due to the depth. Secondly, it is necessary to apply and integrate cutting-edge technologies such as sensing and control technology, signal processing, dynamic estimation, navigation and positioning, and communication, so that underwater robots can become intelligent individuals and can flexibly face the challenges of the harsh environment of the deep sea.
  • Navigation and positioning: The underwater robot use the method of network dialogue with the acoustic transponder installed on the seabed to confirm its position. Every few seconds, the underwater robot transmits a sound wave signal to the transponder network, and each transponder responds to the underwater robot with its unique signal. From the information reflected by the three transponders in the network, the underwater robot can use simple trigonometric function calculations and rely on navigation technology to know the current position and orientation.
  • Speed: Using Doppler sonar, the underwater robot sends fixed-frequency sound waves to the bottom, front, rear, left, right, left, and right directions of the seabed below, and then listen to the difference in sound frequency when they bounce back and can calculate its speed.
  • Relying on ultrasound to snorkel in the deep sea: AUV underwater robots rely on the action of gravity and buoyancy to shuttle back and forth between the sea surface and the seabed. When diving from the sea, it uses gravity to glide down. When it reaches the target point, it throws out part of the counterweight lead block to balance its weight with the buoyancy and then turns on the thrust of the propeller and dives under the sea at maximum speed. With the help of ultrasonic sensors, AUV underwater robots can evaluate the distance of obstacles and maintain a certain altitude with the seabed. Then, the sonar or camera mounted on the bottom of the AUV body is started one after another, and the captured underwater image data is stored in the computer memory. When the power is about to run out, the AUV will throw away the last weight of the lead and float up gently, returning to the sea when it started.

What Substrates are Typically Used in Subsea Technology?

  • BK7 (or equivalent): Typically used in submersible ROVs in the form of optical domes, the BK7 substrate has two main properties in underwater environments - durability and high transmittance. With excellent transmittance from 300nm to 2µm, BK7 is a relatively stiff material with excellent chemical durability, commonly used in high-pressure viewports and underwater cameras.
  • Sapphire (Al2O3): Sapphire (Al2O3), known as one of the hardest materials on Earth, is another substrate used for viewports in windows and submersible applications.

How to Carry Out the Observation Task of the Vast Sea Area?

The concept of assembling a variety of underwater robots and organizing them into an ocean detection team is a feasible direction. At a low cost, small underwater robots that can be mass-produced can be used to observe a specific small-scale sea area, and then the observation data can be integrated into a large-scale observation result, which can effectively achieve the observation task of a large sea area.

Due to the maintenance of the formation of the underwater robot team, the relative positioning between adjacent underwater robots can be used, so there is no need for expensive navigation and communication equipment. And there is no need to worry about having to spend a lot of computing time to carry out the navigation control program. A network motion control method formed by the entire underwater robot team can also reduce the relative position error between each underwater robot, which is conducive to the collection and analysis of marine data. The collaborative division of work of the group robot network under the sea, and the concept of multi-machine division of labor to jointly complete larger sea areas and more complex tasks, it is an important trend in the development of underwater robot technology in the future.

Through the integration of the information collected by the sensors of different underwater robots, the research and development of team formation control technology, and the establishment of the underwater communication network, underwater robots of different models and functions can communicate, connect, and communicate with each other. , complete the group behavior control, monitoring management, system fault diagnosis, and other operations of underwater robots, and realize the ideal of group operation.

Published by Nov 11, 2022 Source :scitechvista

Further reading

You might also be interested in ...

Headline
Knowledge
Exploring the Fundamentals and Key Principles of Welding
Welding is a process that uses "heat" and "electricity" to connect two pieces of metal, and the type of welding metal will also affect the welding results and technical requirements; like many professional skills, welding technology also has different levels of difficulty. First understand the most common types of welding introduction, principle teaching, and skill analysis.
Headline
Knowledge
The Advantages of Powder Coatings: Exploring Their Benefits
Powder coatings were developed in the 1950s as an alternative to traditional finishes such as liquid coatings. While the versatility and appeal of liquid coatings isn't likely to disappear anytime soon, powder coatings offer many advantages and are growing in popularity.
Headline
Knowledge
Understanding CBN Tools
CBN turning tools are tightly sintered from boron nitride and tungsten carbide bases. The hardness of boron nitride is next to PCD. It has excellent chemical stability and will not produce affinity with iron, cobalt, and nickel-based metals. Therefore, it is especially suitable for work hardening steel, with a hardness above HRC45. Chilled cast iron and heat-resistant steel (Inconel) are also suitable.
Headline
Knowledge
Understanding the Structure and Operation of a Slotting Machine
Slotting machines are reciprocating machines that are mainly used to manufacturing horizontal, vertical or flat surfaces.
Headline
Knowledge
A Comprehensive Examination of Hyperautomation and its Impact on Business Processes
Hyperautomation is the use of the power of multiple technologies to achieve end-to-end automation. Hyperautomation is the process of continuously integrating automation into an organization's business processes, combining advanced technologies such as robotic process automation (RPA), artificial intelligence, and machine learning to enhance the results of human work. Not only does it automate key processes, but it also builds an automation ecosystem that finds more processes that can be automated without human intervention.
Headline
Knowledge
5 Essential Values to Understand Automation
The emergence of automation has had a great impact on many industries. Many highly repetitive factory operations may restrict production capacity. With the introduction of Industry 4.0, various technologies have led to the automation of production lines, from the supplying of raw materials, to assembly, distribution, and packaging. People are taking notice of these very important developments, and this article will explore some of these new forms of automation, and the value they bring.
Headline
Knowledge
Understanding the Role of Rotary Broaching
Rotary broaches (also known as oscillating or hexagonal broaches) are one of the commonly used CNC tools in metal-cutting production. It is used to process polygonal parts and inner holes (especially suitable for blind holes) and other special-shaped inner holes.
Headline
Knowledge
Frequently Employed Processing Techniques
In the field of manufacturing processing, common processing methods include broaching, boring, grinding, milling, etc.
Headline
Knowledge
The Functioning of Laser Cutting Machines
Laser cutting technology Compared with traditional cutting, the laser cutting process has better accuracy, and precise details are cut through a high-intensity laser beam.
Headline
Knowledge
What Constitutes Pneumatic Tools: Components, Pros, and Cons?
A pneumatic tool is a device that uses compressed air from an air compressor as the power source for the tool. Pneumatic tools are very sturdy and because they do not use electricity, can be used in areas where the tool may be exposed to inflammable, explosive, dusty, or humid, harsh environments. Owing to their high stability, long working life, and easy maintenance, they are widely used in industrial fields.
Headline
Knowledge
What Purpose Do Vernier Calipers Serve?
One of the tools a mechanic must use is a caliper. Although not as accurate as a micrometer, the caliper is a convenient and practical tool that can help mechanics quickly measure parts and use the measurement results to evaluate subsequent processing.
Headline
Knowledge
How Familiar Are You with Hardware Fasteners?
When it comes to fasteners, everyone seems to know a little bit about it. After all, hardware such as screws and nuts are commonplace in life. Fasteners are widely used in many industries and the degree of standardization, serialization and generalization is extremely high.
Agree