What Exactly are Passive Components, and Why are MLCCs So Popular?
Knowledge

What Exactly are Passive Components, and Why are MLCCs So Popular?

Electronic components are divided into two categories, active and passive; the difference lies in whether or not power is required to drive them. Semiconductor components driven by an electric circuit, such as transistors and diodes are often referred to as active components, while components which play a supporting role, such as resistors, capacitors, inductors, etc. are often referred to as passive. In recent years, a short supply of passive components in the market has drawn market attention to Multilayer Ceramic Capacitors (MLCCs). Because capacitance value is proportional to the surface area of the capacitor, the number of layers in a capacitor will affect the capacitance of the capacitor. Due to developments in ceramic film stacking technology, the capacitance value of MLCCs has increased significantly, and they are gradually replacing medium and low capacitance tantalum capacitors.
Published: Jun 09, 2022
What Exactly are Passive Components, and Why are MLCCs So Popular?

With MLCCs attracting new market attention, what exactly are the functions and advantages of these electronic components?

The function of the resistor is mainly to adjust the current and voltage, and the inductor is to filter the current noise, prevent electromagnetic interference, and stabilize the current. Capacitors are the main electrical energy storage components on the board, performing functions such as coupling and coordination. Among the three passive components, capacitors have the largest market size. They can be divided into ceramic capacitors, aluminum capacitors and tantalum capacitors. Currently, the most popular capacitors are MLCCs. (Multi-layer Ceramic Capacitors.)

Characteristics of Passive Components

The capacitance value of multilayer ceramic capacitors is proportional to the product surface area and the number of stacked layers of ceramic films. Product codes usually classify MLCCs by their package size. However, due to the advancement of ceramic film stacking technology, a smaller volume may not necessarily mean a smaller capacitance value. MLCCs have began to replace electrolytic and tantalum capacitors. but the latter two still occupy a considerable market share, and each has its own advantages. However, for high-performance consumer electronic products such as personal computers and smart phones, MLCC have pretty much replaced the other capacitors.

Ceramic capacitors are favored because of their physical properties such as high voltage and heat resistance, wide operating temperature range, and low loss rate when used at high frequencies. They can be produced as chips, reducing volume and price, and increasing stability. MLCCs are very suitable for mass production. Although the capacitance value of aluminum capacitors is high, and the degree of chip manufacturing is second only to MLCCs, their performance is more affected by the environment. Tantalum capacitors also have the advantages of DC bias and stable capacitance, low leakage loss, and pressure resistance to substrate deflection, but they have more pollution problems and are more expensive.

Not just traditional electronic products need passive components, but the automotive industry also needs passive components as well. In recent years, new products such as electric vehicles and self-driving cars have become popular. While cars in the past required nearly 2,000 passive components, newly designed cars may require as many as 10,000 passive components. This increase in demand has led to not only MLCCs being in short supply, but the delivery time of aluminum capacitors has also been extended to more than half a year. At present, the main global supplier of passive components is Japan. Although Taiwan is the second largest supplier of passive components, there has been relatively little investment in upstream material development. Nearly 70% of MLCC raw materials, such as interface ceramic powder, ceramic substrates, alumina substrates, quartz substrates, conductive adhesives, and cathode foils are sourced from Japan.

What is a Multilayer Ceramic Capacitor (MLCC)?

A Multi-layer Ceramic Capacitor (MLCC) is a kind of ceramic capacitor. Ceramic capacitors are divided into single-layer ceramic capacitors and multilayer ceramic capacitors (MLCC). Due to the advancement of ceramic film stacking technology, MLCCs can be directly attached through SMT (Surface Mount Technology), and the production speed is faster than electrolytic capacitors and tantalum capacitors. MLCCs have become the mainstream product of the capacitor industry, accounting for about 43% of the output value of capacitors, followed by aluminum electrolytic capacitors at about 32%.

MLCCs are composed of parallel ceramic and electrode materials. Its internal structure consists of ceramic layers and internal metal electrode layers alternately stacked. Each ceramic layer is sandwiched by two parallel electrodes up and down to form a flat capacitor. The inner electrode and the outer electrode are connected in parallel, so that the total storage capacity of the capacitor can be increased. The total capacitance of the multilayer ceramic capacitor is the sum capacitances of the layers.

The two main materials used in the construction of MLCCs, are a dielectric ceramic powder and internal and external electrodes. The main raw material of dielectric ceramic powder is barium titanate. After adding various additives, it forms NPO, COG, Y5V, X7R, Z5U and other types. Applications may vary according to the electrical characteristics desired. The dielectric ceramic powder determines the characteristics of MLCC. X7R, X5R and Y5V have high-capacitance values. In terms of grades, X5R and X7R are better than Y5V, while NPO is mainly used for communication products. In terms of price, for MLCCs of the same size and capacitance value, X7R≒X5R; Y5V; Y5U.

The metal used for the electrodes can account for more than 35% of the production cost of the capacitor. To keep up with the demand for increased speed of CPUs and communication components, the number of layers in MLCCs must also be increased. With each additional layer added to the MLCC, it is necessary to add a layer of internal electrodes. Palladium metal used in these electrodes is a rare and precious metal, the price is quite expensive, and the main supply is from Russia. As stocks are often insufficient, the industry replaces the palladium metal electrode material with base metal (nickel, copper) and other metals, hoping to reduce the cost but at the cost of efficiency.

MLCCs have a variety of different specifications, and the difference between each product mainly lies in the capacitance value (storage power per unit voltage), size (above 1210, 0805, 0603, 0402, 0201 and other specifications), temperature stability (Y5V, X7R and NPO, etc.), upper limit of operating voltage, safety certification, ESR (capacitance/time required for charging and discharging) and Q value (the degree of loss of input energy). Taking temperature stability as an example, MLCCs will have different temperature stability due to the difference of the main raw material dielectric ceramic powder. Among them, Y5V type MLCCs have the lowest unit capacitance cost, X7R is the second, and NPO is the highest. Due to the low technical difficulty of production, low price and many competitors, the MLCC of X7R and X5R will gradually replace the Y5V type as portable electronic products require higher temperature stability.

MLCCs can be divided into 0201, 0402, 0603, 0805 and larger than 1206 according to the size of the product. Type 0805 and type 0603 are mainly used for information products such as motherboards and notebook computers. Type 0402 and 0201 are mainly used in high-end mobile phones. With the trend of thin and light electronic products, the proportion of products with 0402 and 0201 specifications continues to increase, and the growth momentum comes from the demand for consumer electronic products such as iPod/iPhone, game consoles and LCD TVs.

Major global suppliers of MLCCs include: Japan's Murata Mfg (25% of the market), TDK (14%), Taiyo Yuden (8%), Kyocera, Panasonic, and Taiwan's Yageo (13%), Walsin Technology (13%), Holystone, Honey Hope Honesty, Darfon, and mainland China’s Fenghua. Japanese manufacturers mainly focus on high-capacity MLCCs. Taiwan's Yageo and Walsin Technology mainly produce medium-to-low-capacity products in bulk specifications, while Holystone mainly produces niche-type high-voltage and high-capacity MLC.

Published by Jun 09, 2022 Source :BENEVO, Source :MoneyDJ

Further reading

You might also be interested in ...

Headline
Knowledge
Essential for Precision Machining: A Complete Guide to Tungsten Carbide Center Drills
In modern manufacturing, precision is the core standard by which product quality and performance are measured. From aerospace components to medical devices, even a minor deviation can lead to serious consequences. When it comes to precision drilling, a critical challenge is ensuring that a drill bit can be accurately positioned at the start of a cut while maintaining stability during high-intensity operations. The tungsten carbide center drill is the professional tool engineered specifically to solve this problem.
Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Agree