What is A Printed Circuit Board (PCB)?
Knowledge

What is A Printed Circuit Board (PCB)?

All electronic products must use the Printed Circuit Board (PCB) to fix the integrated circuit (IC) and other electronic components, and all the integrated circuits and electronic components with different functions are connected with thin copper wires to provide a stable working environment so that electronic signals can circulate between different electronic components.
Published: Dec 20, 2021
What is A Printed Circuit Board (PCB)?

What is a printed circuit board?

A printed circuit board (PCB), also known as a printed wire board (PWB), is a base plate used for assembling electronic components, and is a very important support element for electronic components. Layers of metal copper foil circuits on the board are designed to connect relevant components to achieve effective operation of the electric circuit.

The various components of early electronic products were connected by wires to form a complete path. Later, to simplify the procedures of electronic product manufacturing and reduce costs, a printing method was developed to make circuits, and the copper foil on the substrate was used to replace the original wire connection, thereby improving production efficiency. The various components are mainly connected through the metal copper foil circuits on the board through the design of the various layers to connect and conduct the relevant components.

The traditional circuit board construction method uses printed resists to make the circuits and graphics of the circuit, so it is called a printed circuit board. Because the size of electronic products continues to be miniaturized and refined, most of the current circuit boards are covered with etching resists (wet film or dry film), and after exposure and development, the unnecessary copper foil is etched away to make circuit boards.

What is the substrate of PCB?

Substrates are generally classified based on the insulation, material composition, or flame resistance characteristics of the substrate. Common raw materials are glass fiber, and various types of plastic boards. PCB substrate manufacturers generally use an insulating prepreg composed of glass fiber non-woven material and epoxy resin and then press the copper foil to form a copper foil substrate for use.

What is PCB surface treatment?

Because the copper surface of the PCB is easily oxidized in the environment, it is necessary to reprocess and cover a layer of coating on the exposed area that is not covered by the solder mask to protect the area from oxidation. In response to various subsequent processing needs, various surface treatment methods with different materials, prices, and different degrees of protection have been developed.

Common PCB surface treatments include the following items: bare copper board, spray tin board, lead-free spray tin board, chemical gold board, electroplated gold, chemical silver board, OSP board.

What are the types and applications of PCB structures?

  1. Single-Layer PCB:
    There are copper foil wires on only one side of the circuit board, and no copper foil wires at all on the other side. The circuit of early electronic products was simple, only one side was needed for connection and conduction, and parts could be placed on the other side without copper foil.
    With glass fiber covering a single-sided copper foil as the bottom plate, integrated circuits (IC) and other electronic components are concentrated on one side, and copper wires are concentrated on the other side. The number of copper wires that can be made on a single panel is small, and only early circuit boards will be used.
  2. Double-Layer PCB:
    There are copper foil wires on both sides of the circuit board, and the paths of the front (Top layer) and the back (Bottom layer) can be connected via holes. Since both sides can be wired, the usable area is twice that of a single panel, which is more suitable for products with complex circuits. In the design, the parts are placed on the front side, while the backside is the welding surface of the part feet.
    Glass fiber covered with double-sided copper foil is used as the bottom plate, and copper wires are made on the front and back surfaces of the bottom plate. "Vias" are drilled to let the copper wires pass through the plate from the front to the back, to connect the front and back copper wires. Double-Layer PCBs are used in circuits that are more complex than single-sided boards.
  3. Multi-Layer PCB:
    Multi-Layer PCBs are made by using multiple etched double-sided boards, stacking an insulating layer (Prepreg) between the boards, laying copper foil on both sides of the outermost layers, and pressing them together. Since multiple double-sided panels are used for pressing, the number of layers is usually an even number. The copper foil layer pressed inside can be conductive, a signal layer, a power layer, or a ground layer. In theory, the multilayer board can reach more than 50 layers, but practical applications are currently about 30 layers.
    At present, the motherboards used in computers are mostly eight-layer boards due to too many components. Small electronic products, such as mobile phones, tablet computers, etc., due to their small size generally require at least eight layers of boards. For electronic components with smaller the product size, usually more layers of PCB are required.
The PCB manufacturing process depends on the structure:
  • Single panel: Engineering → Cutting → Drilling → Laminating → Copper Corrosion → Solder Mask → Text → Surface Treatment → Forming → Electrical Testing → Quality Inspection
  • Double panel: Engineering → Cutting Board → Drilling → PTH → Primary Copper → Lamination → Exposure and Development → Secondary Copper-Tin Lead → Film Removal → Copper Corrosion → Tin And Lead Stripping → Solder Mask → Text → Surface Treatment → Molding → Electrical Measurement → Product Check
  • Multilayer board: Engineering → Paneling → Inner Laminate Film → Inner Layer Copper Etching → Inner Layer Film Removal → Pressing → Drilling → PTH → Primary Copper → Lamination → Exposure And Development → Secondary Copper-Tin Lead → Film Removal → Copper Etching → Strip Tin And Lead → Solder Mask → Text → Surface Treatment → Molding → Electrical Test → Quality Inspection
PCB manufacturing depends on the process:
  • Dry process:
    Panel cutting, laminating, exposure, pressing, drilling, forming
  • Wet process:
    Brushing, inner layer development, inner layer etching, inner layer film removal, black/brown oxidation, scum removal, plated through holes, full board copper plating, outer layer development, circuit copper plating, tin-lead plating, outer layer film removal, outer layer Etching, peeling tin and lead, solder mask printing, text printing, surface treatment quality.
Component mounting and welding technology

After the printed circuit board is completed, the integrated circuit (IC) and other electronic components must be connected and fixed onto the printed circuit board.

  1. Through Hole Technology (THT):
    The electronic components are placed on the front of the circuit board, and the pins are soldered on the back. Wave soldering is usually used. The pins are first cut to be close to the board and bent slightly to allow the components to be fixed. Then the circuit board is moved to allow the bottom of the board to contact a flux to remove oxide from the bottom pins. The circuit board is then heated and moved over the melted solder. When the solder cools, the connection is completed. This method will take up a lot of space, as it is necessary to drill a hole for each pin. As the pins occupy space on both sides of the circuit board, the solder joints are relatively large, but the fixing effect is better.
  2. Surface Mounted Technology (SMT):
    Electronic components and pins are placed on the front of the circuit board. Over reflow soldering is usually used. Solder paste containing flux and solder is first printed on the circuit board where it is ready to be connected to the electronic component pins. Then the electronic components are placed on the circuit board so that the pins are in contact with the solder paste on the circuit board. Heat is then applied to the circuit board to melt the solder paste and bond with the electronic component pins. After cooling, the electronic component pins will be fixed on the circuit board. Electronic components can be more densely attached to the circuit board, reducing the total size of the printed circuit board, so most current electronic products use SMT technology to replace THT technology.
Special PCB materials and uses

In the PCB industry, PCBs can be classified into rigid PCBs, flexible PCBs (FPCBs), and Rigid-flex PCBs (RFPCBs) based on their properties. Take the internal parts of a computer as an example. The hardboard is the main substrate of the computer's main board and so on. It is called a printed circuit board or PCB, and most of it refers to a hardboard. The soft board is the board used to connect the components. For example, in the mobile phone, the antenna soft board is generally needed to connect the antenna to the mainboard. Generally, the soft board is required to connect because it can be bent, concave, and thin. When the space is less and the components are far away, flexible boards are often used to connect.

  1. Flexible Printed Circuit (FPC):
    The flexible board is integrated with a flexible plastic base film, copper foil, and adhesive. It is free to bend and is flexible, thin and light, with high precision. It can have multi-layer circuits and may use SMT to attach chips to the board. It is generally called a flexible printed circuit board, abbreviated as a flexible board, soft board, or soft film.
    Like other substrates, FPCs are constantly pursuing higher line density and layer counts to improve FPC performance and reduce transmission power consumption. However, the manufacturing process of FPCs is very complex, and the technical capabilities required for electronic components manufacturing is relatively high.
    The application of soft boards is very wide. Soft boards are most commonly used in communication products such as smartphones. The use of smartphone soft boards accounts for about 40% of the overall soft boards. In addition, softboards are used in laptops, automotive electronics, medical, military, and wearable devices. In the pursuit of lightness, thinness, and smallness in modern products, soft boards have become very important. The applications of soft boards in terminal equipment include the following: antenna soft boards, backlight module soft boards, camera lens soft boards, touch screen soft boards, Touch ID soft boards, sim card soft boards, laptop screen connection soft boards, automobiles Image sensing soft boards, automotive light sets soft boards, etc., this shows the importance of soft boards and their application scope.
    Soft board materials used include polyimide (PI), Modified PI (MPI), and liquid crystal polymer (LCP). PI is now rarely used because of its poor performance. Now the main materials used for soft boards are MPI and LCP. Compared with LCP, MPI is relatively cheaper and its performance has greatly improved in recent years, threating to replace LCP. Some manufacturers have replaced LCP soft boards with MPI soft boards to reduce cost. The biggest consideration factor in the use of these three types of soft boards is transmission loss. In the case of low-frequency transmission, there is no significant difference in the loss of the three. However, as the frequency increases, the loss in PI gradually becomes larger, and the loss in MPI is even greater. With higher frequencies, the advantages of LCP become more obvious. With the development of the 5G era, the transmission frequency will be greatly increased to above 24GHz, so there will be higher requirements for the performance and yield of the soft board.
  2. Rigid-Flex Printed Circuit Board (RFPCB):
    RF PCB is called a soft and hard composite board. In general, in a PCB, between two hard boards, the soft board is pressed together in series to form a printed circuit board, forming a Rigid-Flex PCB. Because of the current combination of HDI technology and the development trend of high-frequency signals, the use of rigid-flex boards is also more extensive.
    The traditional method of combining a soft board and hardboard is usually to use a connector or a hot-bar soldering (HotBar) process and use a soft board to connect the two hard boards. The rigid-flex board transmits signals in a combination of rigid board→soft board→hardboard. The transmission distance is shortened and the speed is increased, which can effectively improve the reliability. An RFPCB can effectively save space on the circuit board and eliminate the need for connectors or HotBar, simplifying product assembly. Although the price is relatively high, it is extremely versatile and can be tailored for applications in many industries. Because of their high reliability, these circuits are designed to be used in demanding fields such as aerospace, medical, and military applications. They are often used in smartphone boards, photovoltaic panels, battery modules, wearable devices, and high-end storage devices.
Published by Dec 20, 2021 Source :cheer-time

Further reading

You might also be interested in ...

Headline
Knowledge
Essential for Precision Machining: A Complete Guide to Tungsten Carbide Center Drills
In modern manufacturing, precision is the core standard by which product quality and performance are measured. From aerospace components to medical devices, even a minor deviation can lead to serious consequences. When it comes to precision drilling, a critical challenge is ensuring that a drill bit can be accurately positioned at the start of a cut while maintaining stability during high-intensity operations. The tungsten carbide center drill is the professional tool engineered specifically to solve this problem.
Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Agree