What is PCIe? The Features of PCIe 6.0 and the Specifications of PCIe 7.0
Trend

What is PCIe? The Features of PCIe 6.0 and the Specifications of PCIe 7.0

PCIe is a standard interface for connecting PC components, such as graphics cards or storage devices, and is used in a wide range of devices, from embedded systems, handheld devices, industrial applications, and servers to supercomputers, etc. For consumers, upgrading the advantage of the later PCIe is that it can support faster memory.
Published: Jan 16, 2023
What is PCIe? The Features of PCIe 6.0 and the Specifications of PCIe 7.0

What is PCle?

PCIe, also known as PCI Express® or Peripheral Component Interconnect Express, is a high-speed serial bus used in computers. This is a physical connection that transfers information and data from one device within a computer to another, or between a computer and a peripheral. The PCIe interface specification is developed and maintained by the PCI Special Interest Group, an alliance of more than 900 companies working together to achieve a common standard.

The application scenarios of PCIe are becoming more and more abundant, whether it is chip-to-chip or network card-to-network connection. Therefore, PCIe 6.0-related products have wide market demand, whether it is data centers, IoT, automobiles, or some government-related applications. As an important backbone for fast data transfer between various computing nodes such as CPUs, GPUs, FPGAs, and workload-specific accelerators, the PCI Express (PCIe) interface has become an important interface between chips in data centers and computing applications since its official creation in the early 21st century. The industry standard for data transfer. With the rapid development of the PCIe standard, in January 2022, the relevant specifications of PCIe 6.0 were officially released, marking the entry into the era of PCIe 6.0.

PCle performance:

One of the most important features of this standard is the multi-lane nature of the PCle connection. A channel is a single serial data connection, similar to a SATA connection. PCIe uses a four-lane connection on storage devices, allowing data transfer up to four times faster than a SATA connection.

All enhancements come with other benefits and reduce power consumption. The combination of NVME and PCle, coupled with the fact that SSDs have no moving parts, makes storage disks drain power slowly, increasing battery life in laptops and tablets. Using the PCle connector with the NVMe protocol creates faster SSDs.

Why is PCIe Needed? Which Drives Market Demand?

From existing applications to emerging applications represented by artificial intelligence and machine learning, more data is being generated continuously. According to IDC data, in the first half of 2021, the overall market size of China's big data platforms reached RMB 5.42 billion, a year-on-year increase of 43.5%.

To support the transmission and storage of such a huge amount of data, the data center must not only have a complete infrastructure structure but also need to adopt new computing models, such as disaggregated computing or composable computing. It also puts forward higher requirements for the improvement of the data transmission rate and the security of data transmission.

Specifically, computing models can become very specific to specific workloads, such as the difference between AI training and inference workloads, and the computing resources required in each case are specific. It can be seen that computing resources and computing models are becoming more homogeneous or decentralized. In this case, standard CPUs and AI accelerators are used in combination, and data is required to be transmitted between them at high speed and safety. This is A core requirement for the PCIe standard to move towards higher data transfer rates. Therefore, as specific workloads or computing resources are distributed or partitioned, the industry must move data over greater distances as quickly and securely as possible, such as the distance between a CPU and an AI accelerator, but requires a fast secure exchange of information.

PCIe has grown tremendously over time. From the launch of PCIe 1.0 to the current PCIe 6.0 era, its data transfer rate has been rising. Especially from PCIe 4.0, 5.0 to 6.0, the increase in data transfer rate is very significant. Analyzing the reasons behind it are mainly due to the explosive growth of data, and this growth is derived from a series of applications driven by artificial intelligence and machine learning.

Update Cycle of PCIe Specification:

  1. Release of new specifications: The starting point for the application of each generation of PCIe specifications is the completion and release of the new generation of PCIe specifications by the PCI-SIG organization. Before and after the release of the new specification, related component manufacturers will also launch control component products that match the new PCIe specification.
  2. Promotion period: About 12 to 18 months after the completion of the new PCIe specification, manufacturers will start to launch peripheral device products that support the new PCIe specification, such as SSD, high-speed network card, or GPU accelerator card, to promote and drive the new PCIe specification. Application of the first generation PCIe specification.
  3. Entering mainstream applications: 12 to 18 months after peripheral devices began to support the new PCIe specification, the processors and chipsets of computers and servers also began to support the new PCIe specification, allowing the new PCIe specification to enter computers and servers, thereby Started to provide applications for mainstream core platforms.
  4. Maturity period: 12 to 18 months after the server starts to support the new PCIe specification, external storage devices such as storage arrays also start to introduce the new PCIe specification. The update of the core architecture of storage devices is a generation later than that of servers. Therefore, when storage devices also start to adopt the new PCIe specification, it also means that this generation of PCIe specifications has entered a mature stage and has begun to be popularized.

Nowadays: The PCIe 6.0 Specification

The PCI-SIG organization released the official specification of PCIe 6.0, which can reach a transmission capacity of 64 GT/s, twice that of the PCIe 5.0 specification, and is compatible with the PCIe specification from the first generation to the fifth generation. PCIe 6.0 can provide high bandwidth, low power consumption, and low latency interconnection, so it is an ideal solution for data centers and many other data applications.

To further meet the requirements of PCIe 6.0 to achieve a data transfer rate of 64GT/s, its architecture must be re-optimized and adjusted. At the same time, there are huge differences in the ratio of the entire circuit and the transmission mechanism of the circuit. One of the biggest changes is the transition from NRZ to PAM4. NRZ and PAM4 have obvious differences. Under the NRZ system, the dual-level mode is adopted, but in PAM4, it is upgraded to the four-level mode, and its transmission rate reaches two-bit clock cycles.

New Features of PCIe 6.0:
  • The data rate doubled from 32GT/s to 64GT/s.
  • Switching from NRZ encoding to PAM-4 encoding, and the resulting error correction impact.
  • From variable-size packets for transmission (TLP) to fixed-size packets (FLIT).

In the field of PCIe, GT/s is used as its unit of measurement. The theoretical data transfer rate of PCIe 1.0 and 2.0 era is about 2.5 and 5GT/s, but considering the specific encoding technology and signal transmission mode, the actual data transfer rate is only 2 and 4GT/s. In this way, PCIe 6.0 with a rate of up to 64GT/s has realized the vision and goal of doubling the rate of each generation standard.

To better achieve a data transmission rate of 64GT/s under the PCIe technical specification and overcome the limitation of the entire channel transmission length and distance, PCIe 6.0 uses a new PAM4 modulation signal, which is very critical to the realization of PCIe 6.0. Before PCIe 6.0, all generations of PCIe used NRZ modulation signals, that is, non-return-to-zero coding. It uses two voltage levels of 0 or 1, and each clock cycle can only transmit 1-bit signals. It only uses two signal levels, high and low. Therefore, compared to the four levels used by PAM4, NRZ is also called PAM2.

To achieve a data transfer rate of up to 64GT/s, PCIe 6.0 uses PAM4 modulation signals. Through PAM4, data transmission per clock cycle can reach 2 bits, not just single-bit data transmission. PAM4 uses four different level levels, which can express 2 numbers per clock cycle, that is, from 00, 01, 10 to 11. This means that within the same voltage fluctuation range and the same clock cycle, because the voltage level of PAM4 is two higher than that of PAM2, it brings a lower voltage margin and higher bit error rate, so signal integrity is guaranteed in the device.

Considering that PAM4 is the key to ensuring that PCIe 6.0 reaches a data transmission rate of 64GT/s, PCIe 6.0 uses forward error correction technology. FEC is essentially an algorithmic technology that can ensure the integrity of all signals in a data transmission link. At the same time, the adoption of FEC technology has also changed the situation of the data flow control unit, requiring developers to make adjustments and changes to the size of the data package itself.

Several generations of specifications before PCIe 6.0 used variable-size data packets, but due to the adoption of FEC technology, PCIe 6.0 must use fixed-size data packets (FLIT) to better ensure the implementation and operation of FEC technology. In addition, considering the increase in the data transmission rate and the PAM4 technology itself will increase the power consumption of the device, the energy consumption per unit of data caused by each bit of data transmission will also increase. To reduce the energy consumption of the overall system, PCIe 6.0 adopts the subversive L0p mode, which essentially allows each channel to be closed or opened through dynamic channel allocation to achieve systemic energy saving.

The Future: PCIe 7.0 Specification

The PCIe 7.0 specification will be designed with low latency and high reliability as the design goals, while reducing power consumption, and will also ensure compatibility with previous PCIe design specification connection modes. PCI-SIG initially established several PCIe 7.0-related specifications, one of which is to have a speed of 128GT/s and a bidirectional transmission performance of 512GB/s with an x16 configuration. While using PAM4 signals, and continue to provide low latency and high-reliability goals, as well as improved energy efficiency, in addition to requirements for backward compatibility with previous generations. PCI-SIG will provide reliable, high-speed, low-latency I/O interconnection function as the goal of PCIe 7.0, and the application market includes 800 Gig Ethernet, AI, machine learning, HPC, quantum computing, and hyper-scale data centers with cloud applications.

Key features of the PCIe 7.0 specification:
  • Offers 128 GT/s in x16 configuration, and 512 GB/s in both directions.
  • Uses PAM4 Pulse Amplitude Modulation signals.
  • Focus on channel parameters and ranges.
  • Reduce latency and improve reliability.
  • Improve energy efficiency.
  • Compatible with all previous PCIe versions.

The PCIe 7.0 specification will focus on 800G Ethernet connection transmission, and include artificial intelligence, machine learning, cloud computing, and quantum computing, and accelerate the promotion of data computing-oriented large-scale data centers, supercomputing systems, or military and space Exploration and other computing application requirements.

If you look at the needs of the consumer market, in terms of user behavior and hardware performance, even if the possibility of using PCIe 7.0 performance by 2025 is not high. The current transmission performance of PCIe 4.0 can already meet the bandwidth of top graphics cards and high-speed SSDs demand, even though Microsoft will officially release the Direct Storage technology that enables the GPU to directly access SSD game texture data recently, the consumer market should still stay at PCIe 5.0 for a long time.

However, the PCIe 7.0 specification, which is a unified standard in the industry, has an urgent need for professional fields, especially large-scale data centers, HPC, heterogeneous acceleration, etc. Although such as AMD, Intel and NVIDIA may develop higher-speed transmission for their chips However, PCIe is still an important and mainstream standard technology in the market across different brand product portfolios. At present, the demand for high-performance computing, large-scale data centers, and even quantum computing is increasing, so PCI-SIG has to accelerate the formulation of standards.

Published by Jan 16, 2023 Source :edntaiwan, Source :eettaiwan

Further reading

You might also be interested in ...

Headline
Trend
The Rise of Digital Textile Printing: Replacing Traditional Dyeing and Printing, Moving Toward a Low-Pollution, Zero-Inventory Era
Traditional textile dyeing and printing have long been criticized for their high water consumption, heavy use of chemicals, and high energy demand—factors that not only impose a severe burden on the environment but also put pressure on the textile industry as it faces increasingly stringent environmental regulations. With the advancement of global sustainability policies and growing consumer awareness of environmental protection, Digital Textile Printing (DTP) has gradually come into the spotlight, emerging as a key direction for textile industry transformation. Featuring flexible production models, reduced environmental impact, and the ability to support small-batch, diversified designs, this technology is rapidly reshaping the landscape of the printing and dyeing sector.
Headline
Trend
YCS and International Bicycle Brands: A Collaboration Story
As cycling becomes more popular globally, particularly in the high-end sports bicycle sector, the demand for precision parts is steadily increasing. These components not only play a central role in a bike's performance but are also a direct reflection of the rider's experience. Many international brands are now placing a greater emphasis on personalized design and high-quality machining to meet the diverse needs of different users.
Headline
Trend
The Dual-Track Growth of Mental Health and Post-Acute Care: A New Focus for Healthcare Institutions in 2025
In 2025, the global healthcare system faces the dual challenges of a surge in chronic diseases and an aging population. The focus is shifting from treating a single illness to promoting holistic health. In the post-pandemic era, the demand for mental health services has risen sharply, with a continuous increase in the number of people suffering from anxiety and depression. To meet this challenge, healthcare institutions are actively adopting a dual-track strategy, focusing on expanding behavioral health services and ensuring seamless transitions to post-acute care. This approach is designed to enhance the continuity of patient care and improve long-term health outcomes.
Headline
Trend
Global Freight Transportation Trends Analysis
In recent years, the global freight market has continued to expand. In 2023, worldwide freight volume reached 11.6 billion tons, with maritime shipping still accounting for the largest share, while air and land transport have grown rapidly due to the rise of e-commerce. In the face of trends such as digitalization, automation, and low-carbon transportation, companies that leverage the latest transportation data and models will gain a competitive advantage and be better equipped to respond to future market changes.
Headline
Trend
Taiwan's Textile Transformation: Digitalization and Localization for Agile Responsiveness
Historically, the global textile industry relied on mass production and economies of scale for low-cost manufacturing. However, as consumer demands become increasingly diverse and dynamic, small-batch, high-mix production and fast delivery have become the market mainstream. Taiwan, with its complete and advanced textile supply chain and high-end functional fabric technology, has long demonstrated competitiveness on the international stage. Facing global supply chain restructuring and the fast fashion trend, Taiwan's textile industry is actively pursuing a digital and localized transformation. The goal is to build a flexible, responsive agile supply chain, making manufacturing a sustained competitive advantage.
Headline
Trend
Data Powers Smarter Forklifts: IIoT Drives Next-Level In-Plant Logistics
Factory material handling is undergoing a major evolution! From traditional manually operated forklifts and conveyor belts to smart equipment equipped with sensors, AI, and IIoT, these machines do more than just move materials—they’ve become “decision-making partners” connecting production, warehousing, and the supply chain. Real-time monitoring, predictive maintenance, and dynamic scheduling boost efficiency, cut costs, and reduce accidents. Leading factories worldwide are already achieving impressive results with smart material handling. In the future, forklifts and AGVs will be capable of self-diagnosis, cross-plant collaboration, and even intelligent energy management, steering the rhythm of the entire factory. Are you ready to embrace this smart logistics revolution?
Headline
Trend
The Trends of Instant Beverages: A New Era of Convenience, Health, and Flavor
In today's fast-paced world, "convenience" has become a top consideration for many shoppers. Instant beverages not only quickly satisfy thirst and provide an energy boost, but their popularity has surged again with the rise of the "stay-at-home economy" and remote work. From classic 3-in-1 coffee to high-end pour-over tea bags, instant drinks are entering a new era that balances quality and health.
Headline
Trend
New Perspectives on Food Trends: The Evolution from General Wellness to Precise Conditioning
The relationship between modern people and food is undergoing a profound transformation. We no longer view food as merely a necessity for survival, but as an art form—a tool for actively managing our physical condition. This trend is shifting from the vague concept of "wellness" to a more precise, scientific, and personalized approach. In the fast-changing food market, this has become an undeniable mainstream trend.
Headline
Trend
The Path to Upgrading Metal Fabrication: Digital Transformation, Low-Carbon Challenges, and Global Opportunities
Facing resource- and energy-intensive production processes, the metal fabrication industry must harness smart manufacturing and automation—deploying CNC machining, robotic arms, and AI monitoring—to cut costs and errors while enhancing precision and delivery reliability. Integration of ERP, MES, and APS platforms increases process transparency and enables real-time scheduling adjustments, forming a seamless data and management loop. It’s recommended to support this with global market size data and figures on rising automation investments to boost credibility.
Headline
Trend
Urgent Need for Low-Carbon Transformation in the Metal Fabrication Industry
The urgent need for low-carbon transformation is especially pronounced in the metal fabrication industry, which has long been resource- and energy-intensive with high carbon emissions, making it a key sector for addressing climate change and global carbon neutrality goals.
Headline
Trend
The Multifaceted Innovative Impact of Microfactories on the Manufacturing Industry
Compared to traditional large factories, microfactories have lower investment costs and modular design advantages. Equipment and production units can be quickly replicated and replaced, reducing downtime and maintenance costs, enabling companies to respond more flexibly to market changes and product adjustments. Moreover, microfactories can shorten time-to-market by quickly responding to market demands and technological innovations. Through modular design and digitized production processes, new product development and market introduction speed up significantly, offering a clear advantage in competitive markets.
Headline
Trend
Trends in Advanced Material Processing Technologies and High-Precision Machine Tool Development
In aerospace, automotive, and high-performance manufacturing industries, advanced alloys (such as titanium alloys and nickel-based superalloys) and composites (such as thermoplastic carbon fiber composites) are becoming mainstream due to their lightweight, high strength, and high-temperature resistance. By 2025, the global aerospace composite market is expected to expand rapidly with an annual compound growth rate of about 13.9%, driven by the demand for environmental protection and net-zero emissions, which will further innovate and apply thermoplastic composite technologies. These new materials present challenges such as high hardness, tool wear, heat management, and processing deformation control, requiring processing equipment to have higher rigidity, precision, and thermal stability. Additionally, the production process's demand for rapid prototyping, modular assembly, and recycling drives the simultaneous upgrading of materials and equipment.
Agree