What is Brain-Computer Interface (BCI)? - Relying on two-way learning between the human brain and computers
Knowledge

What is Brain-Computer Interface (BCI)? - Relying on two-way learning between the human brain and computers

The core value of the brain-computer interface: Communication without action. People can communicate with the outside world and even control surrounding objects through the will of the brain without the need to move any part of the body.
Published: Feb 18, 2022
What is Brain-Computer Interface (BCI)? - Relying on two-way learning between the human brain and computers

What is a brain-computer interface?

The brain-computer interface uses brainwave electrical signals to communicate between humans and machines, allowing patients to control electric devices such as wheelchairs or robotic arms which can be used to grab objects. After the user visually observes the surrounding environment, the user concentrates on the action to be performed, and the generated electroencephalogram (EEG) is received by a non-invasive electrode patch placed on the surface of the head, which is then transmitted to the computer software. The computer processes the EEG signal generated, extracting the information received, decoding it, and performing the desired action on the object. The brain-computer interface provides the physically handicapped person with a way of using their thoughts to control the computer, replacing the keyboard, mouse, and voice input methods, all of which require actual movement of the body.

How does a brain-computer interface work?

Brain-computer interface technology can directly detect activities in the brain, including concentration, thinking, stress, etc. There are many potential benefits, but also risks for abuse. Software can adjust light sources and play stress-relieving music, but imagine a supervisor who monitors the concentration of employees, or even uses brain commands to control the stress level of employees.

Using the brain to directly control computers and machinery is an example of the use of a brain-computer interface. Brain-computer interfaces measure brain activity, extract characteristics of specific activities, and convert these characteristics into digital output signals that replace, restore, enhance, supplement or improve human function. The advantage of this is that it is free from the requirements of most interactive interfaces for sensory reception such as vision and hearing, and physical participation, so that more disabled people can participate in their use without burden. More functions of BCI are still in the experimental development stage, but the main application at present is to replace lost functions, such as communication and mobility.

In recent years, related research on the brain-computer interface has mainly focused on the acquisition of signals, as well as the processing and calculation of signals. EEG signals are collected by wireless dry electrodes attached to the scalp. Compared with connections to the cerebral cortex which collect information during surgery, external dry electrodes have the advantages of low invasiveness and a simple operation procedure. Research has led to algorithms that identify EEG signals and extract their features, reduce noise interference, adjust the actions of control devices, and improve reliability.

Since the measured EEG signal is the result of the superposition of the firing of multiple neurons, researchers must analyze the brainwave characteristics of the user's brain when performing different tasks, and find clues that can help interpret the user's intention. Among them, visual evoked-potential (VEP) and event-related potential (ERP) implies many brain wave features are related to brain activity and function. The independent component analysis can effectively separate the electromyographic signal (EMG) generated by blinking and background electromagnetic interference. With the development of machine learning technology, algorithms that can identify key EEG waveforms can more accurately analyze EEG signals and understand the user's will.

Three elements of the brain-computer interface: Signal Acquisition, Feature Extraction, Translation Algorithm.

Applications of brain-computer interface:

  • Assist in the loss of physical function due to injury or disease, assist in communication or replace wheelchair operation.
  • Restore the function of the body. Such as stimulating the muscles and nerves of paralyzed patients to restore bladder function.
  • Improve physical function. Such as the rehabilitation of stroke patients.
  •  Increase mental function. Such as detecting stress or improving poor concentration of students by detecting their brain activity and monitoring their mental state.
  • As a research tool for brain function.

Industries where the brain-computer interface is applied include communication and control for health and neurofeedback, assistive technology and home control, security and protection, entertainment and games, finance, scientific research, etc. It is expected that with the development of this technology, in addition to enhancing the value of the IT industry, it can help improve and enhance medical care services.

Published by Feb 18, 2022 Source :highscope

Further reading

You might also be interested in ...

Headline
Knowledge
Do You Know About Selective Laser Sintering 3D Printing?
Selective laser sintering is an additive manufacturing technology that sinters small particles of polymer powder into a 3D three-dimensional structure through high-power laser light; thus, this is also called selective laser sintering 3D printing, or SLS 3D printing.
Headline
Knowledge
Quick Guide About Automated Guided Vehicle (AGV)
During the operation of a factory, the flow of materials determines the production efficiency of the factory. Recently, production lines have gradually added automation equipment, but the supply or handling of materials to and from the production line still relies on manual handling operations. This often results in unsmooth logistics and interrupted production flow. To avoid interruptions in supply, and reduce storage and production space, Automated Guided Vehicle (AGV) technology offers an unmanned management solution.
Headline
Knowledge
Types of Plastic Manufacturing Processes
Plastic products can be seen everywhere in daily life, and different plastic products are made through different processing techniques. Plastics manufacturing is the process of making plastic into semi-products or products with practical value. Plastics manufacturing usually includes primary processing and secondary processing of plastics.
Headline
Knowledge
How Will the Manufacturing Industry be Affected by AI Robots?
Artificial intelligence has brought in a new generation of robotics technology: Robotics 2.0. The principal challenge is the transformation from original manual programming methods to true autonomous learning. Faced with this challenge for innovation in AI robotics, how can Taiwan's manufacturing industry best seize the opportunity?
Headline
Knowledge
Do You Know About Semiconductor Supply Chain?
Semiconductor supply chain include all kinds of semiconductor manufacturing and design industries, such as IC manufacturing, IC packaging and testing, IC design, and discrete component manufacturing.
Headline
Knowledge
What Are the Different Types of Electric Linear Actuators?
With the continuous development of the downstream industry of linear actuator and the continuous expansion of linear actuator applications, the global demand for linear actuator has shown a rapid growth. In 2019, the global linear actuator market has exceeded 15 billion yuan.
Headline
Knowledge
What Are the Common Types of Plastic Machinery in the Plastics Industry?
Plastic molding processing technology has been widely used in the production of many high-tech products, such as auto parts, 3C electronic products, connectors, displays, mobile phones, plastic optical lenses, biomedical application products, and general daily necessities, etc. With the trend of diversification of product usage and variability in functional requirements, plastic molding processing technology is booming day by day.
Headline
Knowledge
What Is the Structure of A Milling Machine?
Milling machines provide support to the manufacturing industries. The milling machines can perform almost every milling operation like gear milling, thread milling, angular milling, etc.
Headline
Knowledge
What Is It About Stamping Press Machines?
A stamping press machine is a machine that can process sheet metal into the desired shape. It is commonly used for metal stamping to convert a flat metal sheet into a specific shape. What are the types of punching machines? Let's dig it out!
Headline
Knowledge
What is an Oscilloscope?
An oscilloscope is a diagnostic instrument that graphs electrical signals. Whether it is a simple or complex product, it includes electronic components, and its design, verification, and the debugging process require an oscilloscope to analyze the many electrical signals that make the product wake up.
Headline
Knowledge
What is Heat-assisted Magnetic Technology?
Heat-Assisted Magnetic Recording (HAMR) is a technology that uses laser heat to first heat highly stable media to assist in the magnetic recording of data.
Headline
Knowledge
Key Components of Automotive Semiconductors: ECU, MCU and Sensor
The automotive semiconductor market continues to be optimistic. At present, the main automotive semiconductor chips include microcontrollers (MCU), power management ICs, digital signal controllers (DSP), sensors, power semiconductors, discrete components, micro-electromechanical (MEMS), memory, customized application IC (ASIC), etc. The automotive chip supply chain is complex and long. After the shortage storm in 2021, automakers began to shorten the semiconductor supply chain, hoping to shorten the long chain. Some automakers even have the idea of developing and designing automotive semiconductors by themselves.
Agree