What is Brain-Computer Interface (BCI)? - Relying on two-way learning between the human brain and computers
Knowledge

What is Brain-Computer Interface (BCI)? - Relying on two-way learning between the human brain and computers

The core value of the brain-computer interface: Communication without action. People can communicate with the outside world and even control surrounding objects through the will of the brain without the need to move any part of the body.
Published: Feb 18, 2022
What is Brain-Computer Interface (BCI)? - Relying on two-way learning between the human brain and computers

What is a brain-computer interface?

The brain-computer interface uses brainwave electrical signals to communicate between humans and machines, allowing patients to control electric devices such as wheelchairs or robotic arms which can be used to grab objects. After the user visually observes the surrounding environment, the user concentrates on the action to be performed, and the generated electroencephalogram (EEG) is received by a non-invasive electrode patch placed on the surface of the head, which is then transmitted to the computer software. The computer processes the EEG signal generated, extracting the information received, decoding it, and performing the desired action on the object. The brain-computer interface provides the physically handicapped person with a way of using their thoughts to control the computer, replacing the keyboard, mouse, and voice input methods, all of which require actual movement of the body.

How does a brain-computer interface work?

Brain-computer interface technology can directly detect activities in the brain, including concentration, thinking, stress, etc. There are many potential benefits, but also risks for abuse. Software can adjust light sources and play stress-relieving music, but imagine a supervisor who monitors the concentration of employees, or even uses brain commands to control the stress level of employees.

Using the brain to directly control computers and machinery is an example of the use of a brain-computer interface. Brain-computer interfaces measure brain activity, extract characteristics of specific activities, and convert these characteristics into digital output signals that replace, restore, enhance, supplement or improve human function. The advantage of this is that it is free from the requirements of most interactive interfaces for sensory reception such as vision and hearing, and physical participation, so that more disabled people can participate in their use without burden. More functions of BCI are still in the experimental development stage, but the main application at present is to replace lost functions, such as communication and mobility.

In recent years, related research on the brain-computer interface has mainly focused on the acquisition of signals, as well as the processing and calculation of signals. EEG signals are collected by wireless dry electrodes attached to the scalp. Compared with connections to the cerebral cortex which collect information during surgery, external dry electrodes have the advantages of low invasiveness and a simple operation procedure. Research has led to algorithms that identify EEG signals and extract their features, reduce noise interference, adjust the actions of control devices, and improve reliability.

Since the measured EEG signal is the result of the superposition of the firing of multiple neurons, researchers must analyze the brainwave characteristics of the user's brain when performing different tasks, and find clues that can help interpret the user's intention. Among them, visual evoked-potential (VEP) and event-related potential (ERP) implies many brain wave features are related to brain activity and function. The independent component analysis can effectively separate the electromyographic signal (EMG) generated by blinking and background electromagnetic interference. With the development of machine learning technology, algorithms that can identify key EEG waveforms can more accurately analyze EEG signals and understand the user's will.

Three elements of the brain-computer interface: Signal Acquisition, Feature Extraction, Translation Algorithm.

Applications of brain-computer interface:

  • Assist in the loss of physical function due to injury or disease, assist in communication or replace wheelchair operation.
  • Restore the function of the body. Such as stimulating the muscles and nerves of paralyzed patients to restore bladder function.
  • Improve physical function. Such as the rehabilitation of stroke patients.
  •  Increase mental function. Such as detecting stress or improving poor concentration of students by detecting their brain activity and monitoring their mental state.
  • As a research tool for brain function.

Industries where the brain-computer interface is applied include communication and control for health and neurofeedback, assistive technology and home control, security and protection, entertainment and games, finance, scientific research, etc. It is expected that with the development of this technology, in addition to enhancing the value of the IT industry, it can help improve and enhance medical care services.

Published by Feb 18, 2022 Source :highscope

Further reading

You might also be interested in ...

Headline
Knowledge
Essential for Precision Machining: A Complete Guide to Tungsten Carbide Center Drills
In modern manufacturing, precision is the core standard by which product quality and performance are measured. From aerospace components to medical devices, even a minor deviation can lead to serious consequences. When it comes to precision drilling, a critical challenge is ensuring that a drill bit can be accurately positioned at the start of a cut while maintaining stability during high-intensity operations. The tungsten carbide center drill is the professional tool engineered specifically to solve this problem.
Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Agree