What is Digital Manufacturing?
Trend

What is Digital Manufacturing?

Digital manufacturing is a production method in which computer technology creates a product in a desired style or quantity using little or no human involvement. Digital manufacturing uses digital tools to combines and connect all manufacturing processes.
Published: May 20, 2022
What is Digital Manufacturing?

What is Digital Manufacturing?

Digital manufacturing is a computer digitized system used integrate all processes used in product development, manufacturing, and supply chain operations. It uses 3D visualization, simulation, and analysis to coordinate all manufacturing from design and production to final product service.

Many long-term benefits involving product lifecycle management (PLM) cannot be realized without a comprehensive digital manufacturing strategy, so digital manufacturing is a key integration point between PLM and factory applications and equipment. In addition, 3D modeling and 3D simulation of production processes can improve the quality of manufacturing decisions, while improving processes, saving costs, shortening time-to-market, and achieving accurate yield targets.

Digital manufacturing is a production method in which computer technology creates a product in a desired style or quantity in a mode with little or no human involvement. Direct digital manufacturing, rapid manufacturing, just-in-time manufacturing, and on-demand manufacturing are included. The technologies used in digital manufacturing provide businesses with the ability to develop prototypes and plan and customize the production process from start to finish. Products created through a digital manufacturing model are used by companies in a wide range of industries. It is particularly popular with toolmakers as it allows direct production of tool inserts on demand.

Advantages of Digital Manufacturing:

  • Instead of producing large quantities of products, digital manufacturing ensures that only predetermined quantities are made.
  • Helps maintain efficient energy usage levels and ensures material waste is kept to a minimum.
  • By allowing manufacturers to set the exact amount of product to build, businesses can better control everything from production costs to product quality.
  • Products created by digital manufacturers complete the production process faster.
  • Unnecessary steps and supplementary procedures can be completely reduced or omitted from the manufacturing process.
  • This helps products to be delivered to consumers in a timelier fashion and, in some cases, reduces production costs.
  • Digital fabrication also has systems capable of processing and improving complex designs in a short period.
  • Digital devices can quickly build and enhance products. This automatically condenses the process into allowable steps by simplifying existing designs and geometries.
  • Unify all manufacturing processes, reduce the possibility of errors, and reduce the cost of experimentation through the simulation of virtual technology and automated procedures.
  • It provides an immediate view of production data, including product information, technology applications, factory capabilities, and resource information for the consistent execution of production.
  • The manufacturing process of parts can be optimized in a managed environment, and flexible work orders (displaying 2D or 3D parts), as well as machining and tooling orders, can be generated.
  • Helps to quickly model the factory and ensure that the manufacturing process is running with optimal layout, material flow, and throughput before starting production.

Main Areas of Digital Manufacturing:

Digital manufacturing can be broken down into 3 areas: product life cycle, smart factory, and value chain management. Every area is related to manufacturing execution, from design, product innovation, enhancement of production lines, and optimization of resources, all for better product and customer satisfaction.

  1. Product life cycle: Beginning with engineering design, including subsequent procurement, production, and service life, design specifications can be modified at any time during the manufacturing process if digital data is used at each step.
  2. Smart Factory: Involves smart machines, sensors, and tools. To provide instant feedback on processes and manufacturing technology, operational technology and information technology will be combined. This digital transformation can optimize factory processes and controls. thereby improving performance.
  3. Value Chain Management: Focus on reducing resources, creating optimal processes, and maintaining product quality and customer satisfaction while reducing inventory.

Applications of Digital Manufacturing:

Digital manufacturing takes a holistic view of the product and the design process and facilitates collaboration throughout the production process, so it is used in a variety of industries. For example, an automotive original equipment manufacturer (OEM) can digitally design the entire manufacturing process (tooling, machining, assembly sequence, and factory layout) as designers prepare to design their next automotive project. And manufacturing engineers can immediately react to designers when they discover part limitations.

Suppliers can use digitally fabricated systems to build a complete 3D simulated production line and analyze different production variations and concepts as part of the quoting process. The transparency and precision of using this approach to planning and proposals help companies gain greater confidence from clients. Digital manufacturing has quickly become widely practiced in aerospace, spare parts, and other industries. This technology can be perfectly integrated into automated processes such as additive manufacturing (3D printing), laminated object manufacturing, and CNC cutting and milling.

Looking to the Future of Digital Manufacturing:

Due to the impact of the COVID-19 epidemic on global supply chains and market sales, the global manufacturing industry has undergone rapid transformation. Even small and medium-sized enterprises are trying to find ways to digitally transform to keep up with the new trend of digital manufacturing.

The drive to digitize can boost the need for a digital manufacturing plant: one that offers the highest flexibility while reducing production costs. Providing a secure flow of data across the enterprise and supply chain enables companies to dramatically increase productivity, quality, and profitability. Through digitization, manufacturers can quickly and easily adjust to changes in customer needs, drastically reducing lead times and improving customer satisfaction.

With the digitization of production processes in all walks of life, processes will become more and more automated. Digital manufacturing will continue to be developed in the future, and as various systems interact with each other, they will continue to promote integrated production. This will not only increase the competitiveness of enterprises, but also improve and simplify the entire manufacturing process, creating a more efficient and advanced future.

Published by May 20, 2022 Source :diman

Further reading

You might also be interested in ...

Headline
Trend
The Application of Materials Science in Medical Device Manufacturing
In the field of medical device manufacturing, materials science plays a central role, directly impacting the safety, durability, and clinical performance of equipment. With the rapid development of smart healthcare and precision medicine, the demands for material performance have become increasingly stringent, particularly in the areas of biocompatibility, antimicrobial properties, and lightweight design.
Headline
Trend
Globalization and Steel-and-Glass Structures: Has the Architectural Divide Between East and West Disappeared?
In the West, concrete is a symbol of strength and efficiency, yet in the hands of a Japanese master, it can become a vehicle for Zen philosophy. In Asia, bamboo is revered as a sustainable material, but in the West, it is being redeveloped into a high-tech, eco-friendly solution. This article will delve into why architects from the East and West, even when faced with the same materials, can create two completely different architectural identities. The root of this lies in a fundamental difference in philosophy: the Eastern focus on living in harmony with nature and the Western drive to challenge physical limits.
Headline
Trend
Sewing Challenges in the Era of Sustainability: Balancing Durability and Eco-Friendliness
In discussions on sustainable textiles, sewing threads may seem insignificant, yet they play a crucial role. The material and production process of threads not only affect the durability of garments but also have long-term environmental impacts. In particular, under the influence of “fast fashion,” low-quality threads often break or fade easily, leading to garments being quickly discarded. In contrast, durable threads made from sustainable sources help extend the life cycle of clothing, reduce waste, and embody the concept of “slow fashion.”
Headline
Trend
Smart Breathing Masks: From Pandemic Essential to Intelligent Healthcare
The evolution of healthcare is a continuous response to the needs of the times. Breathing masks, a medical consumable we once paid little attention to, are a concrete example of this transformative wave. They are shifting from being a cold, professional tool to a gentle companion infused with intelligence and human-centered care.
Headline
Trend
Addressing Packaging Challenges Across Industries: Key Strategies for Food, Chemical, and Pharmaceutical Sectors
Do different industries face the same challenges? While the products of the food, chemical, and pharmaceutical industries vary greatly, their packaging lines share a common set of core challenges: how to ensure quality and safety while balancing high efficiency and regulatory compliance. As a result, customized packaging solutions have become the mainstream. Packaging machines are no longer single-function devices for "capping and filling" but rather comprehensive systems designed to meet the specific regulations of each industry.
Headline
Trend
The AI Revolution in Healthcare: Redefining the Future of Medicine
The explosive rise of artificial intelligence (AI) is ushering in an unprecedented transformation within the healthcare industry. No longer just a data analysis tool, AI has evolved into a smart assistant capable of deep collaboration with human experts and even operating independently. From diagnostic assistance to personalized treatment plans, AI is making healthcare more efficient, precise, and accessible to every patient.
Headline
Trend
Waterless Printing & Smart Tech: The New Eco-Standard for Label Printing
As global expectations for environmental protection rise, both consumers and brands are placing greater emphasis on the environmental impact of a product’s entire lifecycle—from production to recycling. Labels and stickers, as common products in the printing industry, have traditionally relied on large amounts of water, solvents, and energy in their production processes, creating a significant environmental burden. Today, sustainable printing is no longer an optional add-on but a key strategy for building brand trust and enhancing market competitiveness. Brands with clear eco-friendly initiatives are more likely to gain favor from both policymakers and the market, positioning themselves at the forefront of the global sustainability trend.
Headline
Trend
Modern Scaffolding: A Guide to Revolutionizing Construction Safety & Efficiency
From the construction of the ancient pyramids of Egypt to the rise of modern skyscrapers, one crucial temporary structure has always played the role of an unsung hero: scaffolding. This support system not only provides a safe foothold for workers but has also continuously evolved from a simple framework into a highly efficient, precise, and intelligent engineering system.
Headline
Trend
The Connection Between Medical Device Manufacturing and Machine Tools
The medical industry is experiencing rapid growth, driven by an aging population, rising chronic diseases, and technological advancements. The demand for high-precision medical devices is increasing, requiring manufacturing processes that ensure safety, reliability, and performance. Machine tools play a critical role in meeting these stringent requirements, enabling the production of complex medical instruments with exceptional accuracy.
Headline
Trend
Smart Manufacturing in Printing: A New Era of Efficiency, Precision, and Sustainability
For over a century, the printing industry has been regarded as a relatively mature and stable sector. However, as market demand diversifies and the wave of digitalization accelerates, printing is undergoing a profound transformation. In the era of Industry 4.0, intelligence and automation have become the keywords of competitiveness. From AI (Artificial Intelligence) to IoT (Internet of Things), and the rise of post-press automation, these technologies are quietly reshaping every step of the printing process. Printing is no longer just about reproducing text and images; it is evolving into an era of “smart manufacturing” that is more efficient, precise, and environmentally friendly.
Headline
Trend
Industrial Applications of CNC in the Robotic Arm Industry
CNC technology is an automated system that precisely controls machinery through computer programs, widely applied across various manufacturing sectors. The robotic arm industry encompasses both industrial uses (such as assembly and welding) and service applications (such as latte art or maintenance). In Japan, for instance, people with disabilities can remotely operate robots from home for work. This industry is visibly experiencing rapid growth. According to 2025 market data, the global robotics market is expected to reach USD 50.8 billion, with service robots accounting for USD 40.58 billion, demonstrating strong growth potential. The application of CNC in the robotic arm industry extends beyond component manufacturing to control systems and versatile task execution.
Headline
Trend
From Solar to Wind: The Heart of Green Energy
When discussing the energy transition, attention often falls on the surface area of solar panels, the blades of wind turbines, or the massive structures of nuclear power plants. Yet behind these world-changing energy systems, the critical components that drive solar, wind, and nuclear operations rely heavily on precision-manufactured CNC machines. Often hailed as the “brains of manufacturing,” these machines, with micron-level precision and highly automated capabilities, serve as the invisible engine powering technological breakthroughs and future innovations in the energy sector.
Agree