What Is the Core of Flexible Manufacturing?
Knowledge

What Is the Core of Flexible Manufacturing?

Flexible production refers to relying on highly flexible manufacturing equipment mainly based on computer numerical control machine tools to realize multi-variety and small-batch production methods. Committed to the goal of zero switching costs, and reduce this waste as much as possible; then the capacity can be adjusted to make it consistent with the market demand capacity.
Published: Jun 02, 2020
What Is the Core of Flexible Manufacturing?

One of the important factors in the rise of China's manufacturing industry is the realization of the domestic large-scale production effect, but with the improvement of consumption levels, people are increasingly favoring personalized and customized products. Flexible production is an advanced birth in this context Manufacturing concept. Flexible production will be the direction that some manufacturing companies need to focus on in the future. While flexible manufacturing will transform manufacturing production, it will also have a huge impact on the manufacturing business model.

What is flexible manufacturing?

As mass-production reaches a bottleneck, consumers' personalized needs are increasingly strong. Flexible manufacturing is produced in response to "mass customization" production, which has the characteristics of small batches and many varieties and achieves efficient control of the production process with its good planning.

Flexible manufacturing models are widely available, such as the customization that is common in our lives. This consumer-oriented, production-oriented production mode is the traditional mass production mode. Flexible manufacturing, the test is the reaction speed of the production line and supply chain. For example, the "C2B" and "C2P2B" models that are emerging in the field of e-commerce reflect the essence of flexible manufacturing.

Flexibility can be expressed in two aspects:
  • The first aspect refers to the flexible reaction capacity of production capacity, that is, the small-batch production capacity of machinery and equipment.
    The device utilization rate and productivity are high, and the unit cost is relatively low. However, it can only process one or a few similar parts, and it is difficult to cope with the production of small and medium batches of many varieties. As the era of mass production gradually moves towards the era of production-oriented to adapt to changes in the market, it is the competitiveness of a manufacturing system to develop multiple varieties, high-quality, and low-cost products in a short time. Flexible manufacturing just meets this point, and its weight in the development of the manufacturing industry is getting heavier and heavier.
  • The second aspect refers to the agility and precision of the supply chain.
    Flexible manufacturing, the supply chain system responds to individual demand for production and distribution. From the traditional "production-to-sale" to "production-to-sale-to-to-to-to-to-to-to-to-to-to-to-to-be-to-to-to-to-to-be-to-to-to-to-be", the production order is completely triggered by consumers alone, and its value chain is displayed as "Tai Cai to produce to sell to goods" is a fully targeted activity with clear personal characteristics. In this process, it not only poses major challenges to the production machines but also revolutionizes the traditional supply chain.
The "flexibility" of the manufacturing system can be reflected in:
  1. Device flexibility-When it is required to produce a series of different types of products, the difficulty of the machine processing different parts with the product changes.
  2. Process flexibility-the ability to use different materials to manufacture a given part/product type.
  3. Product flexibility-unique conditions to change the economy and speed of producing a new set of parts or products.
  4. Work flexibility-the ability to deal with failures, and continue to manufacture a given set of parts/product types, using alternative routes.
  5. Flexible production capacity-the ability to maintain profitability in different series of production volumes.
  6. Expansion kit flexibility-The potential of the expansion kit is gradually expanded in a modular manner.
  7. Production flexibility-the volume of parts/product types that the system can produce.

Flexible Manufacturing Technology

  1. Flexible Manufacturing System (FMS). Multiple fully automatic CNC machine tools, connected by a centralized control system and material handling system, can realize the processing and management of multiple varieties and small and medium batches without downtime.
  2. Flexible Manufacturing Cell (FMC). The advent of FMC and its use in production are about 6 to 8 years later than FMS. It is composed of 1 to 2 processing centers, industrial robots, CNC machine tools, and material transport and storage devices. It has the flexibility to adapt to processing many varieties of products.
  3. Flexible manufacturing line (FML). It is a production line between a single or a small variety of large-volume non-flexible automatic lines and small and medium-sized batches of multiple varieties of FMS. The processing device can be a general-purpose machining center or a CNC machine tool; it can also be a dedicated machine tool or an NC-specific machine tool. The flexibility requirement of the material handling system is lower than that of FMS, but the productivity is higher. It is represented by the flexible manufacturing system in discrete production and the decentralized control system (DCS) in the continuous production process. It is characterized by the flexibility and automation of the production line.
  4. Flexible Manufacturing Plant (FMF). FMF connects multiple FMSs, is equipped with an automated three-dimensional warehouse, and communicates with a computer system. It uses a complete FMS from ordering, design, processing, assembly, inspection, delivery to delivery. It includes CAD/CAM and puts the computer integrated manufacturing system (CIMS) into practice to realize the flexibility and automation of the production system, thereby achieving the full-scale production management, product processing, and material storage and transportation procedures of the entire plant. FMF is the highest level of automated production, reflecting the world's most advanced automation application technology. It integrates the automation of manufacturing, product development, and operation management as a whole, and is represented by the intelligent manufacturing system (IMS) that controls the material flow of information. It is characterized by the flexibility and automation of factories.

Technology has always been an important factor driving the evolution of the business environment, and the current hottest technology upgrade trend is undoubtedly artificial intelligence. At present, although the artificial intelligence industry itself has entered a stable development period, its empowerment for all walks of life is being carried out more enthusiastically.

In the future, large-volume production and low-cost labor-intensive industries will be relocated in large quantities. Small-volume, customized flexible manufacturing capacity will become the mainstream of China's manufacturing industry. The so-called flexible production refers to the realization of mutual conversion between small batch production and large batch production on the production line based on ensuring product quality. As we often mentioned, mass customization is only an important form of flexible production, not a universal standard.

During the implementation of flexible production, the application of intelligent robots has become an important driving force for achieving the optimal goal of flexible production. The key to "machine substitution" is to achieve software flexibility, automatic programming, and automatic operation. It mainly solves the problem of high labor costs encountered by enterprises during operation. On the other hand, in the application process of robots, it can indeed improve the efficiency of related operations, but it does not necessarily improve the overall efficiency of the enterprise. To make the robot fully play its role, it also needs to integrate production, manpower, and information Simultaneous planning of infrastructure and production line infrastructure construction will integrate robot applications into the overall process of industrial production.

Supply chain collaboration is the foundation of flexible manufacturing. In the process of achieving supply chain collaboration, it is necessary to achieve the consistency and unification of the information in all links of the industry chain. ERP is enterprise resource planning management, MES is a factory-oriented management information system. Most manufacturing enterprises ERP and MES are two sets of systems, the two are independent of each other, and the intelligent management system in the world can realize ERP, MES integration and collaboration, further docking with public big data, real-time analysis and sharing of order data and demand data, to establish a real-time collaborative supply chain.

Published by Jun 02, 2020 Source :itread, Source :kknews

Further reading

You might also be interested in ...

Headline
Knowledge
Motion Control Systems in Factory
Motion control encompasses every technology related to the movement of objects. Motion control is also referred to as Servo Control or Robotics and is implemented in industrial processes to move specific loads in a controlled way. It is the core technology of factory automation and is the real-time management of the position and speed of mechanical moving parts according to the expected motion trajectory and specified motion parameters.
Headline
Knowledge
What is Rapid Tooling Molding Technology?
Rapid molding technology is a fast, convenient, and practical mold manufacturing technology. It is especially suitable for the development and trial production of new products, process verification, and functional verification, as well as multi-variety and small batch production.
Headline
Knowledge
The Mother of Machinery - Overview of Machine Tools
Life is full of inventions that provide convenient services and entertainment: mobile phones, MRTs, notebooks, computers, cars, etc. These exquisite finished products presented to consumers are all processed by a series of complex processes and assembled. Among them, in the industrial process of the product, the machine tool has a very critical position, without it, it is impossible to produce equipment and parts, so it has won the title of "The Mother of Machinery". However, despite its important role, it is little known. Therefore, in this article, we will expose the state of the machine tool industry, understand its contribution to the manufacturing industry, and extend the visible development in the future.
Headline
Knowledge
The Principle and Difference Between Punching and Blanking Die Processing Technology
Blanking is a punching piece used as a blank on the plate. Punching is punching round holes on the workpiece, and it can be performed simultaneously with blanking.
Headline
Knowledge
Anode Material Technology and Application in Lithium Batteries
The negative electrode material refers to the raw material that constitutes the negative electrode in the battery. The negative electrode of lithium-ion battery is made of negative electrode active material carbon material or non-carbon material, binder and additive to make paste glue, which is evenly spread on both sides of copper foil, dried and rolled. The key to the successful fabrication of lithium-ion batteries lies in the preparation of negative electrode materials that can reversibly de/intercalate lithium ions.
Headline
Knowledge
Do You Know About Drilling Machine?
Drilling machine is a general-purpose machine tool with a wide range of uses, which can process parts such as drilling, reaming, flat plane and tapping. When the drilling machine is equipped with process equipment, it can also carry out boring, and when the drilling machine is equipped with a universal worktable, it can also carry out drilling, and reaming.
Headline
Knowledge
Introduction of the Broach
The so-called broach refers to the order of size, the rough cutter and the fine cutter. Most of the cutters are mainly installed on the broaching machine, which is called the broach. Broach is a forming tool used for broaching. There are multiple rows of cutter teeth on the surface of the cutter, and the size and shape of each row of cutter teeth increase and change sequentially from the cutting end to the cutting end. When the broach makes a broaching motion, each tooth cuts a certain thickness of metal from the workpiece, and finally obtains the required size and shape.
Headline
Knowledge
The Three Key Enterprise Applications of Edge Computing Are Closely Related to Cloud, Industrial Internet of Things, and 5G
Edge Computing is a distributed network architecture that allows data to be processed and analyzed closer to its source, moving resources such as computing, storage, and network bandwidth as close to users (or endpoints) as possible. Industrial Internet of Things (IIoT), artificial intelligence, big data analysis to 5G networks, edge computing can be said to be the expansion and extension of IT environments and computing technologies that seek common ground in differences.
Headline
Knowledge
What are the Male Mold and Female Mold?
A pair of molds is composed of an upper mold and a lower mold. The male die is a concave die, also known as the upper die. The design of the male mold is very important, and the structural characteristics of the female mold itself change with the structure of the product and the processing method of the mold, which is flexible.
Headline
Knowledge
What is a Five-axis Controller?
The five-axis controller is the core of the five-axis processing machine, which is used to control the trajectory of the five-axis simultaneous motion and the compensation of the motion.
Headline
Knowledge
What is Laser Cutting and Uses?
There is more than one type of laser cutting. It can use different medias to generate lasers of different wavelengths, so the scope, characteristics and functions of the applications are different. In the following, the article will take you to understand the uses of laser cutting in different fields, so that you can better understand the laser cutting technology.
Headline
Knowledge
What is a Metal Shredder? Used in the Steel Industry to Manufacture Scrap Steel Resources
With the rapid development of the iron and steel industry, the iron steel industry has gradually shown contradictions such as insufficient natural resources, excessive energy consumption per ton of output, and environmental pollution. As the second mining industry of the iron and steel industry, scrap steel resources have the advantages of saving energy, reducing pollution, protecting the environment, recycling, etc., and its influence will be increasing.
Agree