What Is Metal Welding?
Knowledge

What Is Metal Welding?

Welding is a method to make two metal blocks belong together. Metal weldability is the ability of metal materials to adapt to the welding process. Under certain welding process conditions, whether it can obtain high-quality welded joints and whether the welded joints can operate safely under use conditions is an evaluation standard.
Published: Jul 09, 2020
What Is Metal Welding?

What Is Metal Welding?

The weld ability of the metal refers to the adaptability of the metal material to the welding process, mainly refers to the difficulty of obtaining high-quality welded joints under certain welding process conditions. Broadly speaking, the concept of "weld ability" also includes "availability" and "reliability". Weld ability depends on the characteristics of the material and the process conditions used. The weld ability of metal materials is not static but develops for example, for materials that were originally considered to be poor in weld ability, with the development of science and technology, new welding methods have become easier to weld, that is, the weld ability has become better. Therefore, we cannot leave the process conditions to talk about weld ability.

Weld ability includes two aspects: one is the joint performance, that is, the sensitivity of forming welding defects under certain welding process conditions; the second is the practical performance, that is, the adaptability of the welded joint to the use requirements under certain welding process conditions.

Common methods of metal welding:

Metal welding refers to a method of connecting two separate metal objects (same or dissimilar metals) by atomic or inter molecular bonding through appropriate means. At present, most metals can be welded by one or more welding methods. The weldable thickness of metals with good weld ability is very wide. From the thinnest plate to the thickest plate, they can be welded. Welding at any position; some metals cannot be connected by any welding method. The properties of various metal materials (such as melting point, density, thermal conductivity, tensile strength, and plasticity, etc.) can be used to measure the difficulty of welding metal materials.

Among all metal materials, ordinary carbon steel is the most widely used and the largest amount; the second is cast iron, but most of the cast iron materials are not used for welding structures, and there are also needs for welding or welding repair; the other is alloy steel, different alloys steel (such as low-alloy high-strength steel, heat-treated steel, ultra-high-strength steel, etc.) needs to be welded using different welding processes; aluminum and its alloys are more and more widely used due to large reserves, especially in applications requiring lightweight. The aluminum alloys have different properties and need to be welded by different welding processes; copper and its alloys are mainly used in applications where electrical conductivity, corrosion resistance, or thermal conductivity are required; stainless steel and cast steel welding processes are similar in composition. Rolled steel, different stainless steels have large performance differences, and different welding processes; although nickel and its alloys are not widely used and the amount is small, they are very important because nickel alloys are the best choice in certain application environments; magnesium and Its alloy are the least commonly used metal. She is also very important because it is the lightest one among the commonly used metals. This material is mostly used in welded structures.

Classified by the family method: Welding methods can be divided into three categories: fusion welding, solid-phase welding, and brazing. Melting welding is divided into energy sources: arc welding, gas welding, thermite welding, electroslag welding, etc.
  1. Arc Welding

    Arc welding uses the burning arc between the electrode and the work piece as the heat source. It is currently the most widely used welding method. The tower includes: electrode arc welding, submerged arc welding, tungsten gas shielded welding, plasma arc welding, and molten electrode gas shielded welding.

    • Electrode Arc Welding
      It uses the electrode coated with paint on the outside as the electrode and filler metal, and the arc burns between the end of the electrode and the surface of the work piece to be welded. The role of the coating under the arc: on the one hand, it can generate gas to protect the arc, on the other hand, it can produce slag covering the surface of the molten pool to prevent the molten metal from interacting with the surrounding gas. The more important role of the slag is to add alloy elements to the molten pool to improve the performance of the weld metal. It is currently the most widely used welding method.
    • Submerged Arc Welding
      Submerged arc welding uses continuous feeding wire as the electrode and filler metal. During welding, a layer of granular flux is covered in the welding area. The arc burns under the flux layer, melting the end of the wire and the local base metal to form a weld seam.
      Submerged arc welding can use a larger welding current, its biggest advantage is high welding speed, good weld quality, especially suitable for welding large seam straight seam ring seam.
    • Tungsten Gas Shielded Welding
      It belongs to in fusible electrode gas shielded arc welding, which uses the arc between the tungsten wire and the work piece to melt the metal to form a weld. During welding, the tungsten wire does not melt, only the electrode function. At the same time, the nozzle of the electric welding torch sends argon or helium gas to protect the arc and the molten pool. You can also add filler metal as needed. It is called TIG welding internationally.
      Tungsten gas shielded welding is an excellent method for thin plate metal and bottom welding because it can control heat input very well.
    • Plasma Arc Welding
      It belongs to in fusible electrode arc welding. It uses the compressed arc between the electrode and the work piece to achieve welding. The electrode is usually a tungsten electrode, which generates plasma-arc plasma gas. Welding can be done with or without metal.
      The plasma arc is straight, the energy density is large, and the arc penetration ability is strong. The small hole effect generated during welding can be used for butting the metal within a certain thickness, and the production efficiency is high and the weld quality is good.
    • Melting Electrode Gas Shielded Arc Welding
      It uses the burning arc between the continuously fed wire and the work piece as a power source and uses the gas sprayed from the spot-welding torch nozzle to protect the arc for welding.
      Advantages of gas-shielded arc welding of the melting electrode: It is convenient for welding in various positions, and has the advantages of fast welding speed and high deposition rate.
    • Flux-Cored Wire Arc Welding
      It belongs to a type of gas arc welding with the melting pole. The core of the welding wire is equipped with various powders, and the added gas is mainly carbon dioxide. The powder is decomposed and melted by heat to produce gas, slag, protective molten pool, alloying, and arc stabilization.
      The flux-cored wire arc is called self-protected flux-cored wire arc welding without additional shielding gas.
  2. Resistance Welding
    Resistance heat is an energy source and is divided into electric welding slag and resistance welding. Mainly welding, seam welding, projection welding, and butt welding.
  3. High Energy Beam Welding
    • Electron beam welding
    • Laser welding
  4. Brazing
    A metal with a melting point lower than the melting point of the material to be welded is used for the brazing. The heating material melts, and the capillary action sucks the material into the gap of the contact surface of the joint, wets the metal surface, and diffuses the solid phase and the liquid phase to form a welding joint.
  5. Other Welding Methods
    Electroslag welding, high-frequency welding, gas welding, air pressure welding, explosion welding, friction welding, cold pressure welding, ultrasonic welding, diffusion welding, etc.
Published by Jul 09, 2020 Source :kknews

Further reading

You might also be interested in ...

Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Headline
Knowledge
The Power of Color: How the Printing Industry Protects Brand Quality
In the printing industry, color has always been a core element influencing both quality and sensory experience. Whether in packaging, advertising, or publications, color accuracy directly affects consumer perception and trust in a brand. With the rise of digitalization and globalization, companies increasingly demand brand consistency, making color management more than just an aesthetic concern—it is a safeguard for printing quality and brand value. This article explores the importance of color management, the application of ICC color calibration, and Pantone’s role in brand identity, providing a comprehensive overview of the core knowledge and practical value of color management in printing.
Headline
Knowledge
Is Your Paper Box Truly Recyclable? The Secrets of Composite Packaging
Imagine a typical morning, a warm drink in your hands, held in what looks like an eco-friendly paper cup. You think to yourself, "At least it's not plastic. It must be better for the environment." But have you ever wondered how that paper container holds a hot liquid without leaking? Can it really be recycled with ease? The truth is, there are hidden secrets about packaging materials you may not know.
Headline
Knowledge
How CNC Technology Ensures the Invisible Safety of Flight
The aerospace industry demands extremely high standards for component precision, lightweight design, and durability, and CNC (Computer Numerical Control) technology is a key enabler to meet these requirements. It is widely used in the production of critical parts such as turbine blades, airframe structures, and landing gear. With the global aerospace market expected to grow from USD 900 billion in 2023 to USD 1.2 trillion by 2030 (CAGR ~4.2%), CNC technology, with its micron-level precision and automation capabilities, not only helps improve aircraft fuel efficiency by around 10% but also ensures all components comply with the stringent AS9100D certification standards, making flight safer and more reliable.
Agree