What is Smart Sensor Technology?
Knowledge

What is Smart Sensor Technology?

The development of new technologies has brought the whole world into the era of the Internet of Things. This new era has more advancements in the area of intelligent design than the information age, and smart sensors have played an indispensable role in its development.
Published: Jun 08, 2022
What is Smart Sensor Technology?

What is Smart Sensor Technology?

A sensor refers to a device that can sense a specified measurement parameter and convert it into a usable output signal. Sensing technology, computer technology, and communication are collectively known as the three pillars of information technology. Sensing technology is a multidisciplinary, modern science and engineering technology focused on the obtaining of information from natural sources, processing and identifying that information, and using it for planning, designing, developing, manufacturing, and testing. The degree of application and evaluation of sensors is an important indicator of a country’s informatization. Intelligent sensing technology is a comprehensive and intensive technology involving various disciplines such as micro-mechanical electronic technology, computer technology, signal processing technology, sensing technology, and artificial intelligence technology. It can realize functions that traditional sensors cannot.

Smart sensors are mainly composed of sensors, microprocessors, and related circuits. At present, smart sensors have been widely used in various fields such as aerospace, aviation, national defense, science and technology, and industrial and agricultural production.

As a tool for humans to obtain information, sensors are an important part of modern information technology. Most of the output of traditional sensors are analog signals, which do not have signal processing and networking functions. They need to be connected to specific measuring instruments to complete signal processing and transmission functions. Smart sensors are based on silicon material microfabrication and CMOS circuit integration technology. According to the manufacturing technology, smart sensors can be divided into three categories: microelectromechanical systems (MEMS), complementary metal-oxide semiconductors (CMOS), and spectroscopy. MEMS and CMOS technologies are easy to achieve low-cost mass production and can integrate sensor elements, bias, conditioning circuits, and even ultra-large-scale circuits in the same substrate or the same package, enabling the device to have multiple detection functions and intelligent data processing functions. For example, smart devices that use the Hall effect to detect magnetic fields, the See beck effect to detect temperature, the piezoresistive effect to detect stress, and the photoelectric effect to detect light.

Smart sensors can process raw data internally and can exchange data with the outside world through standard interfaces. The function of sensors can be changed through software control according to actual needs, to achieve intelligence and networking.

What are the Characteristics of Smart Sensors?

Smart sensors are characterized by high precision, high resolution, high reliability, high adaptability, and high-cost performance. The smart sensor achieves a high signal-to-noise ratio through digital processing, ensuring high precision. Through data fusion and neural network technology, they have the ability to measure and distinguish specific parameters in a multi-parameter state. Through automatic compensation, the drift of system characteristics caused by working conditions and environmental changes is eliminated, and the transmission speed is optimized so that the system works in the optimal low-power state to improve its reliability. Mathematical processing is carried out through software, so that the intelligent sensor has the functions of judgment, analysis, and processing, and the system has high adaptability. The integrated circuits and MEMSs can be mass-produced, and their cost performance is high.

What Does a Smart Sensor Do?

  • Self-compensation capability: Automatic compensation for sensor nonlinearity, temperature drift, time drift, response time, etc. through software.
  • Self-calibration function: After the operator inputs a zero value or a certain standard value, the self-calibration software can automatically calibrate the sensor online.
  • Self-diagnosis function: After the power is turned on, the sensor can be self-tested to check whether all parts of the sensor are normal, and can diagnose faulty components.
  • Numerical processing function: According to the internal program of the smart sensor, the data can be automatically processed, such as statistical processing, outlier elimination, etc.
  • Two-way communication function: A closed-loop is formed between the microprocessor and the basic sensor. The microprocessor not only receives and processes the data of the sensor but also feeds back information to the sensor to adjust and control the measurement process.
  • Information storage and memory function: Smart sensors can store a large amount of information data, which users can query at any time. Such information may include historical information about the device. For example, how many hours the sensor has worked, and how many times the power supply has been replaced. The content size is only limited by the storage capacity of the smart sensor itself.

With the development of science and technology, the functions of the intelligent sensors will gradually be enhanced. Artificial neural networks, artificial intelligence, and information processing technology (such as sensor information fusion technology, fuzzy theory, etc.) will give the sensor more advanced intelligence and analysis capabilities, better judgment, self-adaptation, and self-learning functions, which can help the sensor complete complex tasks such as image recognition, feature detection, and multi-dimensional detection.

The Development Trend of Sensors:

  • Miniaturization: With an increasingly connected world, the demand for sensors in countless applications has exploded. Many of these applications require multiple sensors that take up very little space, show low performance degradation, and have low power requirements.
  • Digitization: With so many applications in the IoT space, smart sensors need to move towards digital, not only in capturing sensory data, but also in interpreting that data for various applications.
  • Sensor Fusion: With the trend of digitization, multi-sensor integration is directly connected to everything about the proliferation and expectations of IoT. The need to capture multiple types of measurements in extremely small packages is driving the development of multi-sensing elements.

Application Development of Smart Sensors:

Smart sensors represent a new generation of perception and self-awareness capabilities and are key components of future intelligent systems. Through intelligent system design at the component level, smart sensors will be used for food safety applications and biological hazard detection, safety hazard detection and alarm, local and global environmental detection, health monitoring and medical diagnosis, industrial, military, and aerospace applications, etc., and will have a profound impact on these fields.

Technical Analysis of Smart Sensors:

The development trend of smart sensors can be classified according to MEMS, CMOS, and spectroscopy. MEMS and CMOS are the two main technologies for smart sensor manufacturing.

  1. MEMS technology:
    MEMS sensors were first used in the military field and can perform multi-sensor data fusion in the field of target tracking and automatic identification, with specific high precision and the ability to identify, track and locate targets. Flow sensors made with MEMS technology and integrated with A/D converters have been used in aerospace. Achieving intelligence requires the integration of MEMS sensor functions along with signal conditioning, control, and digital processing for bidirectional communication of data and instructions, all-digital transmission, local digital processing, self-calibration, and programming of user-defined algorithms.
  2. CMOS technology:
    CMOS technology is the mainstream integrated circuit technology. It can not only be used to make digital integrated circuits such as microprocessors, but also sensors, data converters, and highly integrated transceivers for communication purposes. It has the advantages of integrated manufacturing and low cost. CMOS computing elements can be integrated with different sensing elements to make flow sensors, dissolved oxygen sensors, turbidity sensors, conductivity sensors, pH sensors, oxidation-reduction potential (ORP) sensors, temperature sensors, pressure sensors, touch sensors and other smart sensors used in various occasions. The market share of CMOS touch sensors and temperature sensors remains at 14% and has continued to grow in recent years. Dissolved oxygen sensors fabricated with CMOS technology and integrated with D/A converters have been used in the automotive field. Turbidity sensors with integrated transceiver functions have been used in the field of biomedicine. Digital low-light CMOS-based imagers that combine CMOS imagers and processing circuitry are becoming mainstream imagers for military applications.
  3. Spectroscopy:
    Spectroscopy is an important interdisciplinary subject involving physics and chemistry. It analyzes the physical and chemical properties of matter by measuring the spectral characteristics of the interaction between light and matter. Precise multispectral measurements can be used to analyze solids, liquids, and even gaseous objects, if there is light. Spectral imaging is widely used for various object sensing and material property analysis. Hyperspectral imaging performs spectral analysis on each pixel in the image, enabling wide-range measurements.

Application Areas of Smart Sensors:

  1. Smartphones:
    The more common smart sensors in smartphones now include distance sensors, light sensors, gravity sensors, fingerprint recognition sensors, image sensors, three-axis gyroscopes, and electronic compasses. For example, the fingerprint recognition sensor can collect fingerprint data, and then perform rapid analysis and authentication, eliminating the tedious password operation and unlocking quickly.
  2. Artificial Intelligence/Robots:
    Sensors are the most basic hardware of artificial intelligence, like human sensory acquisition organs. Many sensors can realize perception + control, and home automation = perception + control. This level of information interaction and human-computer interaction requires more human participation. Artificial intelligence gives the human logical brain to the machine, realizes perception + thinking + execution, and finally rises to this level. The key hardware used by intelligent robots includes drives, reducers, and sensors. Intelligent sensors play an important role in collecting external information and data.
  3. AR/VR:
    The sensing equipment in virtual reality mainly includes two parts: one part is used for human-computer interaction and is worn on the operator's body with a three-dimensional helmet display, data gloves, data clothes, etc., and the other part is used for correct perception of the real environment. Various visual, auditory, tactile, and force sensors implemented in AR/VR are required to improves the user experience.
  4. UAV:
    Unmanned aerial vehicles (UAVs) are popular intelligent hardware at present. The realization of its intelligent flight control system requires the use of various intelligent sensors, including an inertial measurement unit (IMU), MEMS accelerometer, current sensors, inclination sensors, and engine intake air flow sensors. The IMU combined with GPS is the key for the drone to maintain its orientation and flight path. The development of UAV intelligence is important for direction and path control, and for air traffic management. The multi-axis magnetic sensor used by the IMU is essentially a small compass with extremely high accuracy. It transmits data to the central processor by sensing the direction, and thereby indicating the direction and speed.
  5. Smart wear:
    Sensors play a vital role in wearable devices. The most basic function of wearable devices is to realize motion sensing through sensors.
  6. Smart Home:
    Sensors are the basis for smart home control systems. With the development of technology, more and more sensors are used in smart home systems. The smart home field requires the use of sensors to measure, analyze and control system settings. The smart devices used in the home incorporate technologies such as position sensors, proximity sensors, liquid level sensors, flow and speed control sensing, environmental monitoring, and security sensing.
  7. Smart cars/autonomous driving:
    The Internet of Vehicles is a major field for the development of the Internet of Things. Smart cars are the core of the Internet of Vehicles and are in rapid development. In the era of smart cars, active safety technology has become an emerging field of concern. It is essential to the improving of existing safety systems, such as rollover and stability control (ESC), which require MEMS acceleration sensors and angular velocity sensors to sense and measure body posture. Voice will become an important interaction method between people and smart cars, and MEMS microphones will usher in new development opportunities. MEMS sensors also have many applications in the automotive field, including for airbags, car engines, and more.
  8. Smart industry:
    Smart factories use the Internet of Things technology to strengthen information management and services, master the production and sales process, improve the controllability of the production process, reduce manual intervention on the production line, collect production line data in a timely and accurate manner, and reasonably arrange production plans and production schedules, and optimize the supply chain. In the field of industrial production, sensors are widely used. Sensors are required for monitoring all aspects of industrial production, and the data is fed back to the control center so that abnormal nodes can be intervened in time to ensure normal industrial production. MEMS makes sensors miniaturized and intelligent, and MEMS sensors will have great potential in the era of the smart industry. MEMS temperature and humidity sensors can be used to detect environmental conditions, and MEMS accelerometers can be used to monitor the vibration and rotational speed of industrial equipment. High-precision MEMS accelerometers and gyroscopes can provide precise position information for the navigation and rotation of industrial robots.
Published by Jun 08, 2022 Source :pcnow

Further reading

You might also be interested in ...

Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Headline
Knowledge
The Power of Color: How the Printing Industry Protects Brand Quality
In the printing industry, color has always been a core element influencing both quality and sensory experience. Whether in packaging, advertising, or publications, color accuracy directly affects consumer perception and trust in a brand. With the rise of digitalization and globalization, companies increasingly demand brand consistency, making color management more than just an aesthetic concern—it is a safeguard for printing quality and brand value. This article explores the importance of color management, the application of ICC color calibration, and Pantone’s role in brand identity, providing a comprehensive overview of the core knowledge and practical value of color management in printing.
Headline
Knowledge
Is Your Paper Box Truly Recyclable? The Secrets of Composite Packaging
Imagine a typical morning, a warm drink in your hands, held in what looks like an eco-friendly paper cup. You think to yourself, "At least it's not plastic. It must be better for the environment." But have you ever wondered how that paper container holds a hot liquid without leaking? Can it really be recycled with ease? The truth is, there are hidden secrets about packaging materials you may not know.
Headline
Knowledge
How CNC Technology Ensures the Invisible Safety of Flight
The aerospace industry demands extremely high standards for component precision, lightweight design, and durability, and CNC (Computer Numerical Control) technology is a key enabler to meet these requirements. It is widely used in the production of critical parts such as turbine blades, airframe structures, and landing gear. With the global aerospace market expected to grow from USD 900 billion in 2023 to USD 1.2 trillion by 2030 (CAGR ~4.2%), CNC technology, with its micron-level precision and automation capabilities, not only helps improve aircraft fuel efficiency by around 10% but also ensures all components comply with the stringent AS9100D certification standards, making flight safer and more reliable.
Headline
Knowledge
Why Are Smartphones Getting Thinner Yet More Drop-Resistant?
Have you ever wondered why smartphones are becoming increasingly thinner? Driven by user convenience and portability, devices are shrinking while still retaining the functionality of previous generations, or even upgrading it, all while becoming lighter and slimmer. The key behind this lies in CNC (Computer Numerical Control) machine technology, which plays a central role in consumer electronics manufacturing. The consumer electronics industry encompasses smartphones, laptops, wearable devices (such as smartwatches), and various household appliances. These products demand extremely high standards for aesthetic design, structural precision, and functional performance. CNC technology is primarily applied in precision component machining, casing production, thermal management components, and customized designs.
Agree